• Title/Summary/Keyword: Shock structure

Search Result 590, Processing Time 0.027 seconds

COSMIC RAY ACCELERATION DURING LARGE SCALE STRUCTURE FORMATION

  • BLASI PASQUALE
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.483-491
    • /
    • 2004
  • Clusters of galaxies are storage rooms of cosmic rays. They confine the hadronic component of cosmic rays over cosmological time scales due to diffusion, and the electron component due to energy losses. Hadronic cosmic rays can be accelerated during the process of structure formation, because of the supersonic motion of gas in the potential wells created by dark matter. At the shock waves that result from this motion, charged particles can be energized through the first order Fermi process. After discussing the most important evidences for non-thermal phenomena in large scale structures, we describe in some detail the main issues related to the acceleration of particles at these shock waves, emphasizing the possible role of the dynamical backreaction of the accelerated particles on the plasmas involved.

Characteristics of Induced Voltage in Loop Structures from High-frequency Radiation Antenna (고주파 방사에 의한 루프형 구조물에서의 유도전압 특성)

  • Choi, Sang-Won;Kwon, Hyuk-Myun
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.5
    • /
    • pp.49-54
    • /
    • 2012
  • There is a possibility that electrical sparks may occur at discontinuities in metallic structures from distance of close to high power radio/radar transmitters. Voltage may be induced on these metallic structures by the radio-frequency transmitter. In this case, a person who comes into contact with these structure may be undergone a severe electrical shock. In this paper, assessment of the electrical shock and ignition hazards was investigated through experimental which are consisted radio transmitter and metallic loop-type structure in shield room. We measured that the induced voltage was highest at 61 MHz of transmission frequency, and confirmed the possibility of electric shock and explosion induced by a voltage or spark. But it is needed additional research where is opened site.

A Numerical Study on Strut-Placed Supersonic Flow in Annulus Flowfield (스트럿트가 있는 초음속 환형유동장에 대한 수치적 연구)

  • Park Hee Jun;Joo Won Goo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.53-63
    • /
    • 2002
  • In this numerical approach, strut-placed supersonic annular flow is examined. The geometrical variations of strut cause strong influence on flowfield structures. The geometrical variations are as follows, swept effect, attack angle effect, variation of leading edge shape. These changed features such as velocity structure, pressure structure, shock-boundary layer interaction are compared and analyzed according to each geometrical configuration.

  • PDF

PIV 기법을 이용한 마하 2.0 초음속 노즐의 과대팽창 충격파구조에 대한 연구

  • 김정훈;안규복;김지호;윤영빈
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.64-64
    • /
    • 2002
  • Two dimensional velocity distributions outside a Mach 2.0 supersonic nozzle have been investigated using digital particle image velocimetry (PIV). Mean velocities, turbulence intensities, vorticity field and volume dilatation field are obtained from 300 instantaneous PIV images using 0.33 $\mu\textrm{m}$ $TiO_2$ particle. The seeding particle of larger size, 1.4 $\mu\textrm{m}$ $TiO_2$, is also used for the experimental measurements of velocity lag downstream of shock waves according to particle sizes. The results have been compared and analyzed with schlieren photographs and computational fluid dynamics (CFD) results for the velocity distribution, the locations of shock waves and over-expanded shock structure. It was shown that the locations of normal shock and shock waves can be resolved by the axial or radial velocities, and the velocity lag is more significantly increased due to particle inertia as a particle size increases. And it was also found that over-expanded shock structures call be predicted by volume dilatation fields, and streamwise turbulence intensities are influenced significantly by normal shock waves.

  • PDF

Study on Analysis of Two-dimensional Compressible Waves by Lattice Boltzmann Method (격자볼츠만법을 이용한 2차원 압축성 충격파의 유동현상에 관한 수치계산)

  • Kang Ho-Keun;Ro Ki-Deok;Son Kang-Pil;Choi Min-Sun;Lee Young-Ho
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.557-560
    • /
    • 2002
  • In this study, simulation of weak shock waves are peformed by a two-dimensional thermal fluid or compressible fluid model of the lattice Boltzmann method. The shock wave represents an abrupt change in fluids properties, in which finite variations in pressure, internal energies, and density occur over the shock thickness. The characteristics of the proposed model with a simple distribution function is verified by calculation of the sound speeds, and the shock tube problem. The reflection of a weak shock wave by wedge propagating in a channel is performed. The results agree well with those by finite difference method or by experiment. In the simulation of unsteady shock wave diffraction around a sharp corner, we show a flow field of vortical structure near the comer.

  • PDF

Key technologies research on the response of a double-story isolated structure subjected to long-period earthquake motion

  • Liang Gao;Dewen Liu;Yuan Zhang;Yanping Zheng;Jingran Xu;Zhiang Li;Min Lei
    • Earthquakes and Structures
    • /
    • v.26 no.1
    • /
    • pp.17-30
    • /
    • 2024
  • Earthquakes can lead to substantial damage to buildings, with long-period ground motion being particularly destructive. The design of high-performance building structures has become a prominent focus of research. The double-story isolated structure is a novel type of isolated structure developed from base isolated structure. To delve deeper into the building performance of double-story isolated structures, the double-story isolated structure was constructed with the upper isolated layer located in different layers, alongside a base isolated structure for comparative analysis. Nonlinear elastoplastic analyses were conducted on these structures using different ground motion inputs, including ordinary ground motion, near-field impulsive ground motion, and far-field harmonic ground motion. The results demonstrate that the double-story isolated structure can extend the structural period further than the base isolated structure under three types of ground motions. The double-story isolated structure exhibits lower base shear, inter-story displacement, base isolated layer displacement, story shear, and maximum acceleration of the top layer, compared to the base isolated structure. In addition, the double-story isolated structure generates fewer plastic hinges in the frame, causes less damage to the core tube, and experiences smaller overturning moments, demonstrating excellent resistance to overturning and a shock-absorbing effect. As the upper isolated layer is positioned higher, the compressive stress on the isolated bearings of the upper isolated layer in the double-story isolated structure gradually decreases. Moreover, the compressive stress on the isolated bearings of the base isolated layer is lower compared to that of the base isolated structure. However, the shock-absorbing capacity of the double-story isolated structure is significantly increased when the upper isolated layer is located in the middle and lower section. Notably, in regions exposed to long-period ground motion, a double-story isolated structure can experience greater seismic response and reduced shock-absorbing capacity, which may be detrimental to the structure.

A Numerical Study on Flow Characteristics of Second Throat Exhaust Diffuser with Shock Cone Shape (램 구조물 형상에 따른 이차목 디퓨저의 유동 특성에 관한 수치적 연구)

  • Yu, Seongha;Jo, Seonghwi;Kim, Hongjip;Ko, Youngsung;Na, Jaejeong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.346-351
    • /
    • 2017
  • A numerical study has been conducted to investigate flow characteristics of STED with ram structure shape. By increasing the attack angle of shock cone, vacuum pressure is increased because of oblique shock at ram structure and separation point moved to the downstream of the second throat. By increasing blockage ratio, expansion wave angle is increased at ram structure while vacuum pressure is constant.

  • PDF

Computational Investigation of Pintle Nozzle Flow (핀틀 노즐 유동장의 수치해석적 연구)

  • Kim, Joung-Keun;Lee, Ji-Hyung;Chang, Hong-Been
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.2
    • /
    • pp.35-41
    • /
    • 2009
  • Both the nozzle expansion ratio and the chamber pressure are simultaneously and continuously changed according to pintle movement, resulting in a different internal flow structure and flow separation characteristics. In this paper, the pintle position effect on nozzle flow structure and separation phenomena is analyzed by experimental-aided Computational Fluid Dynamic(CFD). Among the turbulent models for RANS(Reynold Averaged Navier Stokes) in Fluent, Spalart-Allmaras model is better agreement with the nozzle wall pressure distribution attained by cold-flow test than other models. And even if a conical nozzle is used, there is a shock structure similar to cap-shock pattern mainly occurred in contoured or shaped optimized nozzle because of internal shock generated from pintle tip flow separation.

Dynamic Analysis of Gimbal Structure System Including Nonlinear Elastic Rubber Vibration Isolator with Shock Acceleration (비선형 탄성 방진 고무부에 충격 가속도를 받는 짐발 구조 시스템의 동적 해석)

  • Lee, Sang Eun;Lee, Tae Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.4
    • /
    • pp.415-422
    • /
    • 2016
  • When shock acceleration is applied to a mechanical system, it may cause malfunctioning and damage to the system. Hence, to prevent these problems when developing a gimbal structure system for observation reconnaissance, the MIL-STD-810G shock standard must be satisfied as a design specification. Rubber vibration isolators are generally assembled on the base of the system in order to reduce the shock transferred from the aircraft. It is difficult to analyze the transient behavior of the system accurately, because rubber has a nonlinear load-deformation curve. To treat the nonlinear characteristic of the rubber, bilinear approximation was introduced. Using this assumption, transient responses of the system under base shock acceleration were calculated by the finite element method. In addition, experiments with a true prototype were performed using the same conditions as the analytical model. Compared with experimental data, the proposed numerical method is useful for the transient analysis of gimbal structure systems, including rubber vibration isolators with nonlinear stiffness and damping.