• 제목/요약/키워드: Shock intensity

검색결과 127건 처리시간 0.025초

MCPs 압출 공법을 이용한 PP 수지의 고배율 압출 발포 연구 (A study for PP resin High magnification MCPs Extrusion foaming)

  • 현창훈;차성운;김학빈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.1046-1050
    • /
    • 2005
  • Micro Cellular Plastics create a sensation at polymer industrial for lowering product cost & overcoming a lowering of mechanical intensity. There Is much development from injection molding pans but Extrusion parts is slow. This research is MCPs Extrusion parts, It is basis experiment for Process to make beads that is basis raw material of Package used most by shock mitigative of industry.

  • PDF

Properties of polarised emission in radio relics

  • Fernandez, Paola Dominguez
    • 천문학회보
    • /
    • 제46권2호
    • /
    • pp.64.2-64.2
    • /
    • 2021
  • Radio relics track cosmological shocks propagating through the intracluster medium. They are among the largest and most polarised sources in the radio sky reaching polarisation fractions up to ~60%. High-resolution observations in total intensity and in polarisation show complex structures on kiloparsec scales. Nevertheless, the relation between the observed features and the underlying morphology of the magnetic field is not clear. In this work we three dimensional MHD-Lagrangian simulations to study the polarised emission produced by a shock wave that propagates through a turbulent medium that resembles the intracluster medium. We find that the synchrotron emission produced in a shocked turbulent medium can reproduce some of the observed features in radio relics. Our work confirms that radio relics can also be formed in an environment with a tangled magnetic field. We also study the effect of intrinsic Faraday Rotation and the depolarisation of the source. Finally, we show how our results depend on the angular resolution of observations.

  • PDF

초음파 캐비테이션에 의해 생성되는 라디칼의 발생량 평가를 위한 소노루미네센스 발광강도의 측정 (Measurement of sonoluminescence intensity for evaluation of the amount of radical generated by ultrasonic cavitation)

  • 김정순;김무준
    • 한국음향학회지
    • /
    • 제42권1호
    • /
    • pp.50-56
    • /
    • 2023
  • 이산화티탄 현탁액에서 초음파 캐비테이션 충격파에 의해 발생하는 하이드록실 라디칼(·OH) 및 슈퍼옥사이드 음이온 라디칼(·O2- )은 살균 및 소독 작용을 할 수 있어 활용 가치가 높다. 화학첨가물이 없는 살균 방법으로서의 실용화를 위하여 본 연구에서는 이산화티탄 현탁액에 방사된 강력 초음파에 의해 발생하는 라디칼의 발생 정도를 평가하는 방법을 제안하였다. 제안된 방법에서는 초음파 붕괴에너지에 의해 발광하는 소노루미네센스 현상을 활용하였고, 소노루미네센스에 의한 빛 에너지의 양을 통해 라디칼 발생 정도를 평가하였다. 그 결과, 이산화티탄의 농도가 0.02 wt%인 낮은 농도에서도, 이산화티탄이 없는 경우보다 5배 이상 높은 빛 에너지가 수광되었다. 그 이후, 농도가 0.1 wt%씩 증가함에 따라 발생하는 소노루미네센스의 광도는 약 14.8×10-12 lm씩 선형적으로 증가하였다. 따라서 이산화티탄 현탁액에 강력 초음파를 방사하여 발생하는 라디칼은, 주어진 농도 범위 내에서 이산화티탄의 농도가 증가함에 따라 선형적으로 증가함을 확인할 수 있었다.

열충격 시험에 의한 암석의 물성변화 (Physical Properties of Rocks according to Heating Treatment)

  • 김재환;이명성;이재만;이미혜;박성미
    • 보존과학연구
    • /
    • 통권31호
    • /
    • pp.31-42
    • /
    • 2010
  • This study were performed thermal shock test for four kind of different rocks (Iksan granite, Namsan granite, Jeongseon marble, Yeongyang sandstone), and according to heating temperature($400^{\circ}C$, $600^{\circ}C$) on samples were investigated physical properties such as specify gravity, porosity, p-wave velocity. As a result, the tendency was appeared that porosity increased, and specific gravity and p-wave velocity decreased at a more higher temperature. But, the situation of change appeared characteristic according to temperature and rock types. In the case of Yeongyang sandstone, it appeared in especially porosity increasing at $400^{\circ}C$. The specific gravity was little change in the all the rock at $400^{\circ}C$ but the decreased at $600^{\circ}C$. Therefore the specific gravity in the temperature range is due to the relatively small impact on the change is expected. Porosity of the granite at $400^{\circ}C$ changes little. but marble in the rate of change is large. Conversely, the sandstone porosity decreased. At $600^{\circ}C$ increased porosity in all of rocks. particularly sandstone the smallest increase in porosity. Experiments showed that p-wave velocity measured through dry rocks was sensitive to quantify the thermal damage. The p-wave velocity of all rocks decreased with increasing temperature. In the relation between porosity and p-wave velocity, p-wave velocity decreased with increasing porosity. On the other hand, in case of Yeongyang sandstone p-wave velocity decreased with decreasing porosity. thus, development of microcracks more affects p-wave velocity than porosity. In this study, damage intensity was well explained with porosity and p-wave velocity values depending on temperature increase.

  • PDF

구속효과를 고려한 원자로 압력용기 균열선단에서의 응력분포 예측 (Evaluation of the Crack Tip Stress Distribution Considering Constraint Effects in the Reactor Pressure Vessel)

  • 김진수;최재붕;김영진
    • 대한기계학회논문집A
    • /
    • 제25권4호
    • /
    • pp.756-763
    • /
    • 2001
  • In the process of integrity evaluation for nuclear power plant components, a series of fracture mechanics evaluation on surface cracks in reactor pressure vessel(RPV) must be conducted. These fracture mechanics evaluation are based on stress intensity factor, K. However, under pressurized thermal shock(PTS) conditions, the combination of thermal and mechanical stress by steep temperature gradient and internal pressure causes considerably high tensile stress at the inside of RPV wall. Besides, the internal pressure during the normal operation produces high tensile stress at the RPV wall. As a result, cracks on inner surface of RPVs may experience elastic-plastic behavior which can be explained with J-integral. In such a case, however, J-integral may possibly lose its validity due to constraint effect. In this paper, in order to verify the suitability of J-integral, tow dimensional finite element analyses were applied for various surface cracks. A total of 18 crack geometries were analyzed, and $\Omega$ stresses were obtained by comparing resulting HRR stress distribution with corresponding actual stress distributions. In conclusion, HRR stress fields were found to overestimate the actual crack-tip stress field due to constraint effect.

Robust immunoreactivity of teenager sera against peptide 19 from Porphyromonas gingivalis HSP60

  • Kwon, Eun-Young;Cha, Gil Sun;Joo, Ji-Young;Lee, Ju-Youn;Choi, Jeomil
    • Journal of Periodontal and Implant Science
    • /
    • 제47권3호
    • /
    • pp.174-181
    • /
    • 2017
  • Purpose: Epitope spreading is a phenomenon in which distinct subdominant epitopes become major targets of the immune response. Heat shock protein (HSP) 60 from Porphyromonas gingivalis (PgHSP60) and peptide 19 from PgHSP60 (Pep19) are immunodominant epitopes in autoimmune disease patients, including those with periodontitis. It remains unclear whether Pep19 is a dominant epitope in subjects without periodontitis or autoimmune disease. The purpose of this study was to determine the epitope spreading pattern and verify Pep19 as an immunodominant epitope in healthy teenagers using dot immunoblot analysis. The patterns of epitope spreading in age-matched patients with type 1 diabetes mellitus (type 1 DM) and healthy 20- to 29-year old subjects were compared with those of healthy teenagers. Methods: Peptide from PgHSP60, Mycobacterium tuberculosis HSP60 (MtHSP60), and Chlamydia pneumoniae HSP60 (CpHSP60) was synthesized for comparative recognition by sera from healthy subjects and patients with autoimmune disease (type 1 DM). Dot immunoblot analysis against a panel of peptides of PgHSP60 and human HSP60 (HuHSP60) was performed to identify epitope spreading, and a densitometric image analysis was conducted. Results: Of the peptide from PgHSP60, MtHSP60, and CpHSP60, PgHSP60 was the predominant epitope and was most consistently recognized by the serum samples of healthy teenagers. Most sera from healthy subjects and patients with type 1 DM reacted more strongly with PgHSP60 and Pep19 than the other peptides. The relative intensity of antibody reactivity to Pep19 was higher in the type 1 DM group than in the healthy groups. Conclusions: Pep19 is an immunodominant epitope, not only in autoimmune disease patients, but also in healthy young subjects, as evidenced by their robust immunoreactivity. This result suggests that the Pep19-specific immune response may be an initiator that triggers autoimmune diseases.

Collapse failure mechanism of subway station under mainshock-aftershocks in the soft area

  • Zhen-Dong Cui;Wen-Xiang Yan;Su-Yang Wang
    • Geomechanics and Engineering
    • /
    • 제36권3호
    • /
    • pp.303-316
    • /
    • 2024
  • Seismic records are composed of mainshock and a series of aftershocks which often result in the incremental damage to underground structures and bring great challenges to the rescue of post-disaster and the repair of post-earthquake. In this paper, the repetition method was used to construct the mainshock-aftershocks sequence which was used as the input ground motion for the analysis of dynamic time history. Based on the Daikai station, the two-dimensional finite element model of soil-station was established to explore the failure process of station under different seismic precautionary intensities, and the concept of incremental damage of station was introduced to quantitatively analyze the damage condition of structure under the action of mainshock and two aftershocks. An arc rubber bearing was proposed for the shock absorption. With the arc rubber bearing, the mode of the traditional column end connection was changed from "fixed connection" to "hinged joint", and the ductility of the structure was significantly improved. The results show that the damage condition of the subway station is closely related to the magnitude of the mainshock. When the magnitude of the mainshock is low, the incremental damage to the structure caused by the subsequent aftershocks is little. When the magnitude of the mainshock is high, the subsequent aftershocks will cause serious incremental damage to the structure, and may even lead to the collapse of the station. The arc rubber bearing can reduce the damage to the station. The results can offer a reference for the seismic design of subway stations under the action of mainshock-aftershocks.

S Foam Core를 적용한 자전거 사용 편의성에 중점을 둔 모듈형 자전거 액세서리 디자인 연구 (Module-type bicycle accessory design research focusing on bicycle user convenience by applying S Foam Core)

  • 박유진;송성일;강승민
    • 한국결정성장학회지
    • /
    • 제29권1호
    • /
    • pp.32-38
    • /
    • 2019
  • 서비스디자인 방법론을 통해 사용 편의성에 중점을 둔 신개념의 모듈형 자전거 액세서리를 탄소 소재를 이용하여 개발하였다. 기존의 탄소 재질을 사용할 경우 자전거 주행 중 충격에 견디지 못하거나, 파손 현상이 발생하였으며, 이러한 문제점을 해결하고자 새로운 소재(S Foam Core 소재)를 적용 하였다. 기존 탄소 재질과 S Foam Core 소재의 강도, 뒤틀림 강도, 충격흡수 및 진동감쇄 측정을 하였고, S Foam Core가 적용된 제품이 기존 탄소 소재 보다 더 우수한 결과를 얻었다. 본 연구에서는 S Foam Core 소재로 프로토 타입을 제작하여, 자체 실험을 통해 검증하였고, 이를 보고하고자 한다.

고온관 누설에 의한 가압열충격 사고시 원자로 용기의 건전성 평가를 위한 결정론적 파괴역학 해석 (Deterministic Fracture Mechanics Analysis of Nuclear Reactor Pressure Vessel Under Rot Leg Leak Accident)

  • 이상민;최재붕;김영진;박윤원;정명조
    • 대한기계학회논문집A
    • /
    • 제26권11호
    • /
    • pp.2219-2227
    • /
    • 2002
  • In a nuclear power plant, reactor pressure vessel (RPV) is the primary pressure boundary component that must be protected against failure. The neutron irradiation on RPV in the beltline region, however, tends to cause localized damage accumulation, leading to crack initiation and propagation which raises RPV integrity issues. The objective of this paper is to estimate the integrity of RPV under hot leg leaking accident by applying the finite element analysis. In this paper, a parametric study was performed for various crack configurations based on 3-dimensional finite element models. The crack configuration, the crack orientation, the crack aspect ratio and the clad thickness were considered in the parametric study. The effect of these parameters on the maximum allowable nil-ductility transition reference temperature ($(RT_{NDT})$) was investigated on the basis of finite element analyses.

충격하중이 작용하는 평판의 동적 응력 해석 (Dynamic Stress Analysis on Impact Load in 2-Dimensional Plate)

  • 황갑운;조규종
    • 전산구조공학
    • /
    • 제8권1호
    • /
    • pp.137-146
    • /
    • 1995
  • 본 논문에서는 최근 관심이 증대되고 있는 충격하중에 의해 시간의 흐름에 따라 형성되는 구조물의 응력분포 양상을 유한요소 해석적으로 고찰하기 위하여 동적 응력 해석 프로그램을 개발하였다. 유한요소 해석에 의하면, 종방향 응력파는 충격하중이 작용하는 방향과 동일한 방향으로 진행하며, 응력파 선단의 속도와 모양은 이론해석에 의한 결과와 같음을 알 수 있다. 또한 종파의 진행방향에 45.deg. 방향으로 전단파가 발생하여 진행함을 알 수 있으며, 전단파의 속도는 종파의 1/2이 되고, 종파보다 전단파의 강도가 큼을 알 수 있다.

  • PDF