• Title/Summary/Keyword: Shock and vibration control

Search Result 100, Processing Time 0.028 seconds

A Study on MR Insert for Shock Wave Attenuation (MR Insert 의 충격저감 성능 연구)

  • 강병우;김재환;최승복;김경수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.121-126
    • /
    • 2001
  • This paper presents the experimental study for the reduction of transmitted shock waves in smart structures incorporating MR insert. MR fluid is filled within the two aluminum layers and two piezoceramic disks are embedded on the host plate as a transmitter and a receiver of the shock wave. Pulse wave generated by the transmitter is transmitted to the receiver through the MR insert and the plate. By applying magnetic field to the MR insert, the amplitude of the transmitted shock wave is reduced remarkably. The attenuation performance is tested by changing the applied magnetic field on MR inserts in two ways: by changing angle of permanent rubber magnet from 90 to 5 with 5 decrements, by using electromagnet in which magnetic field is controllable. The propagating wave speed of MR insert is also investigated.

  • PDF

Design of Vehicle Control Algorithm and Engine-generator Control for Drivability of Range-extended Electric Vehicle (주행거리 연장형 전기자동차의 차량제어 알고리즘 설계 및 운전성 확보를 위한 엔진 발전시스템 제어)

  • Park, Youngkug
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.6
    • /
    • pp.649-659
    • /
    • 2016
  • This paper describes control algorithm and control structure of vehicle control unit for range-extended electric vehicle equipped with engine-generator system, and specially presents methods which determine optimal operating points and decreases a vibration or a shock for operating the engine-generating system. The vehicle control algorithm is consisted of several parts which are sequence control, calculation of wheel demand torque, determination of operating points, and management of operating points and so vehicle controller has be made possible to efficiently manage calibration parameters. The control algorithm is evaluated by driving test modes, launching performance and operating engine-generator system and so on. In conclusion, this paper present methods for extending a mileage, improving a launching performance and reducing vibration or shock when the engine-generating system is starting or is stopping.

Non-linearity characteristics consideration of the Disc Spring under Shock using Numerical Analysis (수치해석을 통한 충격 시 접시 스프링의 비선형 특성 고찰)

  • Bang, Seung-Woo;Lee, Hae-Jin;Kwon, O-Cheol;Lee, Jung-Youn;Oh, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1266-1271
    • /
    • 2007
  • General coil spring has linearity. However, disc spring has non-linearity so that using this non-linearity disc spring can be designed to do shock-absorbing in cases we need because shock response also has non-linearity. By changing the shape and stacking number, it is satisfactory with response of displacement, velocity and acceleration. Conventionally, disc spring was used to control the vibration against huge load and limited space. However, it is limitedly used because of difficulty of the designing guidance. Therefore, disc spring is needed to study further in order to apply it widely. Response of disc spring is compared to response of coil spring by changing ho/t radio with computer simulation and the usage of disc spring is increased through analysis of effect of design factors. The purpose of this paper is that the shock response of disc spring is calculated through numerical simulation and effect of ho/t and stiffness is analyzed to broad usage so that design factor of disc spring is presented.

  • PDF

Non-linearity Characteristics Consideration of the Disc Spring Under Shock Using Numerical Analysis (수치해석을 통한 충격 시 접시 스프링의 비선형 특성 고찰)

  • Bang, Seung-Woo;Lee, Hae-Jin;Sim, Hyun-Jin;Park, Sang-Gil;Lee, Jung-Youn;Oh, Jae-Eung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.2
    • /
    • pp.153-159
    • /
    • 2008
  • General coil spring has linearity. However, disc spring has non-linearity so that using this non-linearity disc spring can be designed to do shock-absorbing in cases we need because shock response also has non-linearity. By changing the shape and stacking number, it is satisfactory with response of displacement, velocity and acceleration. Conventionally, disc spring was used to control the vibration against huge load and limited space. However, it is limitedly used because of difficulty of the designing guidance. Therefore, disc spring is needed to study further in order to apply it widely. Response of disc spring is compared to response of coil spring by changing $h_o/t$ ratio with computer simulation and the usage of disc spring is increased through analysis of effect of design factors. The purpose of this paper is that the shock response of disc spring is calculated through numerical simulation and effect of $h_o/t$ and stiffness is analyzed to broad usage so that design factor of disc spring is presented.

Computer Simulation and Modeling of Cushioning Pneumatic Cylinder (공기압 실린더의 쿠션특성에 관한 모델링 및 컴퓨터 시뮬레이션)

  • 이상천
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.6
    • /
    • pp.794-805
    • /
    • 1999
  • Pneumatic cushioning cylinders are commonly employed for vibration and shock control. A mathematical simulation model of a double acting pneumatic cushioning cylinder designed to absorb shock loads is presented which is based on the following assumptions; ideal equation of state isentropic flow through a port conservation of mass polytropic thermodynamics single degree of freedom piston dynamics and energy equivalent linear damping. These differential equation can be solved through numerical integration using the fourth order Runge-Kutta method. An experimental study was conducted to validate the results obtained by the numerical integra-tion technique. Simulated results show good agreement with experimental data. The computer simulation model presented here has been extremely useful not only in understanding the has been extremely useful not only in understanding the basic cushioning but also in evaluating different designs.

  • PDF

Design of Optical Disk Profile for Minimizing the Focusing Error (포커싱 에러를 최소화하기 위한 광디스크의 형상설계)

  • Hong, Seok-Joon;Jee, Jung-Geun;Lee, Jong-Soo;Park, No-Cheol;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.1015-1021
    • /
    • 2002
  • Optical disk is the media which is used generally in data storage device, but it has a disadvantage in the vibration by spinning and the shock. For overcoming these disadvantage, we must control the optical disk to minimize the focusing error and tacking error. The present study investigates the disk profile for minimizing the focusing error subjected to environmental shock and weight of the disk. In this study, the disk is assumed to be a cantilever beam to determine the disk profile for the minimum displacement as to the shock considering only the first mode. Also, for the optimally determined profile by ADS program this paper recalculate the robust caltilever profile by using orthogonal array and ANOM.

  • PDF

Development of Active Suspension System for Wheelchairs to Improve Riding Comfort of Gait Disorders (보행 장애인의 승차감 개선을 위한 휠체어용 능동형 서스펜션 시스템 개발)

  • Heo, Yeong Jun;Jeon, Geum Sang;Lee, Sang Hun;Choi, Seong Dae;Jang, Ik Gyu
    • Journal of Biomedical Engineering Research
    • /
    • v.41 no.5
    • /
    • pp.203-209
    • /
    • 2020
  • As the number of people with gait disorders increases, the demand for using wheelchairs increases and the area of a ctivity for people with disabilities expands, thereby they increasing the demand for riding comfortability in various driving environments. Therefore, this study is to develop an entry-level active suspension system that apply to wheelchairs and to evaluate its usability. The suspension applied in this paper consists of a coil spring, a shock absorber, a control module to control the strength of the shock absorber, and a road surface condition monitoring system. A wheelchair occupant secures the riding comfort by adjusting the coil strength of the shock absorber in 12 steps according to various road conditions. Therefore, the mechanical properties were evaluated through the structural analysis of the suspension system, and the tendency toward the magnitude of the road surface vibration attenuated according to the rigidity of the suspension through the vibration test was attempted. In conclusion, as a result of structural analysis of the suspension system, stress in a range lower than the yield strength of the material was generated, and the vibration test showed the effect of attenuating the vibration generated from the road surface when the stiffness of the suspension was adjusted.

A Study on the Manufacturing and Dynamic Charateristics of Vibration Absorber Using Piezoceramics and Isolation Pad (압전세라믹과 방진고무를 이용한 진동흡수장치의 제작과 동적특성 연구)

  • Heo, Seok;Kwak, Moon-k
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.477-482
    • /
    • 2002
  • This research is concerned with the study of an active vibration absorber using piezoelectric actuators and Isolation pad. The active isolation system consists of 4-pairs of PZT actuators bonded on the surface of an aluminum plate and a passive damping material. The active system is connected to the passive system in series. The Signals of the accelerometers are fed into the PZT actuator through the controller. We proposed a new control technique which can deal with the shock as well as the base excitation in this study. The Positive Acceleration Feedback(PAE) tuned to the natural frequency of the vibration isolation system is used to suppress the vibrations caused by the shock using the top accelerometer signal. The Negative Acceleration Feedback (NAF) based on the base acceleration signal is used to counteract the base motion. Experimental results show that the proposed active vibration isolation system can suppress vibrations.

  • PDF

Passive control of strength of shock wave (다공벽을 이용한 충격파 강도의 피동제어)

  • Choe, Yeong-Sang;Gwon, Sun-Beom;Jo, Cheol-Yeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.1
    • /
    • pp.174-184
    • /
    • 1997
  • A shock wave, being an irreversible process, gives rise to entropy increase. A great deal of effort has been made to control shock wave and boundary layer interaction related to energy losses as well as problems of vibration and noise. In the present study, tests are performed on a roof mounted half circular arc in an indraft type supersonic wind tunnel to evaluate the effects of porosity, length and depth of cavity in passive control of shock wave on the attenuation of shock strength by reviewing the measured static pressures at the porous wall and cavity. Also the flow field is visualized by a Schlieren system. The results show that in the present study the porosity of 8% produced the largest reduction of pressure fluctuations and that for the same porosity, the strength of shock wave decreases with the increasings of the depth and length of cavity.

Analysis of Pillar Stability for Ground Vibration and Flyrock Impact in Underground Mining Blasting (발파진동 및 비산충격에 대한 광주 안정성 분석)

  • Park, Hyun-Sik;Kim, Ji-Soo;Ryu, Bok-Hyun;Kang, Choo-Won
    • Explosives and Blasting
    • /
    • v.30 no.2
    • /
    • pp.9-20
    • /
    • 2012
  • These days, mining industry prefers underground development for large mining because of exhaustive minning resources and large drafts and mining cavities thanks to extensive distribution of heavy excavation machines. In a mining design, to control collapse of cavities and secure stability, design of cavities and pillars are considered as very important. Therefore, this study obtained a prediction equation of blasting vibration through instrumentation for underground cavities. And we obtained theoretical shock vibration imposed on pillar through fragmentation analysis and measurement of flyrock distance. To examine the influence of pillar in underground mining blasting, we carried a finite element analysis and compared the result with prediction equation of blasting vibration, and shock vibration of flyrock when a impact was imposed on pillar and theoretical shock vibration.