• Title/Summary/Keyword: Shock amplification factors

Search Result 3, Processing Time 0.017 seconds

Functional Shock Responses of the Pear According to the Combination of the Packaging Cushioning Materials (포장완충재의 구성에 따른 배의 단일파형 충격반응)

  • Kim, Ghi-Seok;Park, Jong-Min;Kim, Man-Soo
    • Journal of Biosystems Engineering
    • /
    • v.35 no.5
    • /
    • pp.323-329
    • /
    • 2010
  • Physical damages on fruits may be caused by shock and vibration inputs that transmitted from the transporting vehicle through the packaging and cushioning materials to the fruit. In this study, both half sine shock test and trapezoidal shock test were performed by MIL-STD-810F specification in order to investigate and represent the shock response properties such as peak acceleration and shock amplification factors of the pear according to packaging and cushioning materials for optimal packaging design during transportation. Shock excitation data that had been measured on the vehicle operating on the real road were used. Shock response properties measured by half sine shock test were smaller than those measured by trapezoidal shock test. Results represent that corrugation shapes and thickness can significantly affect the cushioning performance than the paper configurations of cushioning pad and showed that fruits may be damaged seriously while transported on the unpaved road without the properly cushioned packaging practices.

Aluminum and E-glass epoxy plates behavior subjected to shock loading

  • Muhit, Imrose B.;Sakib, Mostofa N.;Ahmed, Sheikh S.
    • Advances in materials Research
    • /
    • v.6 no.2
    • /
    • pp.155-168
    • /
    • 2017
  • The terrorist attacks and dangers by bomb blast have turned into an emerging issue throughout the world and the protection of the people and structures against terrorist acts depends on the prediction of the response of structures under blast and shock load. In this paper, behavior of aluminum and unidirectionally reinforced E-Glass Epoxy composite plates with and without focal circular holes subjected to shock loading has been identified. For isotropic and orthotropic plates (with and without holes) the classical normal mode approach has been utilized as a part of the processing of theoretical results. To obtain the accurate results, convergence of the results was considered and a number of modes were selected for plate with and without hole individually. Using a shock tube as a loading device, tests have been conducted to composite plates to verify the theoretical results. Moreover, peak dynamic strains, investigated by experiments are also compared with the theoretical values and deviation of the results are discussed accordingly. The strain-time histories are likewise indicated for a specific gauge area for aluminum and composite plates. Comparison of dynamic-amplification factors between the isotropic and the orthotropic plates with and without hole has been discussed.

HSP90 inhibitor, AUY922, debilitates intrinsic and acquired lapatinib-resistant HER2-positive gastric cancer cells

  • Park, Kang-Seo;Hong, Yong Sang;Choi, Junyoung;Yoon, Shinkyo;Kang, Jihoon;Kim, Deokhoon;Lee, Kang-Pa;Im, Hyeon-Su;Lee, Chang Hoon;Seo, Seyoung;Kim, Sang-We;Lee, Dae Ho;Park, Sook Ryun
    • BMB Reports
    • /
    • v.51 no.12
    • /
    • pp.660-665
    • /
    • 2018
  • Human epidermal growth factor receptor 2 (HER2) inhibitors, such as trastuzumab and lapatinib are used to treat HER2-positive breast and gastric cancers. However, as with other targeted therapies, intrinsic or acquired resistance to HER2 inhibitors presents unresolved therapeutic problems for HER2-positive gastric cancer. The present study describes investigations with AUY922, a heat shock protein 90 (HSP90) inhibitor, in primary lapatinib-resistant (ESO26 and OE33) and lapatinib-sensitive gastric cancer cells (OE19, N87, and SNU-216) harboring HER2 amplification/over-expression. In order to investigate whether AUY922 could overcome intrinsic and acquired resistance to HER2 inhibitors in HER2-positive gastric cancer, we generated lapatinib-resistant gastric cancer cell lines (OE19/LR and N87/LR) by continuous exposure to lapatinib in vitro. We found that activation of HER2 and protein kinase B (AKT) were key factors in inducing intrinsic and acquired lapatinib-resistant gastric cancer cell lines, and that AUY922 effectively suppressed activation of both HER2 and AKT in acquired lapatinib-resistant gastric cancer cell lines. In conclusion, AUY922 showed a synergistic anti-cancer effect with lapatinib and sensitized gastric cancer cells with intrinsic resistance to lapatinib. Dual inhibition of the HSP90 and HER2 signaling pathways could represent a potent therapeutic strategy to treat HER2-positive gastric cancer with intrinsic and acquired resistance to lapatinib.