• Title/Summary/Keyword: Shock Structure

Search Result 590, Processing Time 0.029 seconds

Possibility of Chaotic Motion in the R&D Activities in Korea

  • Loh, Jeunghwee
    • Journal of Information Technology Applications and Management
    • /
    • v.21 no.3
    • /
    • pp.1-17
    • /
    • 2014
  • In this study, various characteristics of R&D related economic variables were studied to analyze complexity of science and technology activities in Korea, as reliance of R&D activities of the private sector is growing by the day. In comparison to other countries, this means that it is likely to be fluctuated by economic conditions. This complexity characteristic signifies that the result of science and technology activities can be greatly different from the anticipated results - depending on the influences from economic conditions and the results of science and technology activities which may be unpredictable. After reviewing the results of 17 variables related to science and technology characteristics of complex systems intended for time-series data - in the total R&D expenditure, and private R&D expenditure, numbers of SCI papers, the existence of chaotic characteristics were. using Lyapunov Exponent, Hurst Exponent, BDS test. This result reveals science and technology activity of the three most important components in Korea which are; heavy dependence on initial condition, the long term memory of time series, and non-linear structure. As stable R&D investment and result are needed in order to maintain steady development of Korea economy, the R&D structure should be less influenced by business cycles and more effective technology development policy for improving human resource development must be set in motion. And to minimize the risk of new technology, the construction of sophisticated technology forecasting system should take into account, for development of R&D system.

Comparison between observation and theory for the stand-off distance ratios of CMEs and their associated ICMEs

  • Lee, Jae-Ok;Moon, Yong-Jae;Lee, Jin-Yi;Jang, Soojeong;Lee, Harim
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.81.3-81.3
    • /
    • 2016
  • We examine whether the observational stand-off distance ratios of CMEs and their associated ICMEs could be explained by theoretical model or not. For this, we select 16 CME-ICME pairs from September 2009 to October 2012 with the following conditions: (1) limb CMEs by SOHO and their associated ICMEs by twin STEREO spacecraft and vice versa when both spacecraft were roughly in quadrature; (2) the faint structure ahead of a limb CME is well identified; and (3) its associated ICME clearly has a sheath structure. We determine the observational stand-off distance ratios of the CMEs by using brightness profiles from LASCO-C2 (or SECCHI-COR2) observations and those of the ICMEs by solar wind data from STEREO-IMPACT/PLASTIC (or OMNI database) observations. We also determine the theoretical stand-off distance ratios of the CME-ICME pairs using semi-empirical relationship based on the bow shock theory. We find the following results. (1) Observational CME stand-off distance ratio decreases with increasing Mach number at the Mach numbers between 2 and 6. This tendency is consistent with the results from the semi-empirical relationship. (2) The observational stand-off distance ratios of several ICMEs can be explained by the relationship.

  • PDF

DYNAMICAL INTERACTION OF SUPERNOVA REMNANT WITH PRE-EXISTING WIND BUBBLE (항성풍 거품 내에서의 초신성 잔해의 동역학적 구조)

  • Choi, Seung-Eon;Cha, Seung-Hun;Gu, Bon-Cheol
    • Publications of The Korean Astronomical Society
    • /
    • v.11 no.1
    • /
    • pp.27-47
    • /
    • 1996
  • We have performed the high resolution computer simulation with 1D spherical hydrodynamic code in order to study the dynamical evolution of supernova ejecta interacting with a pre-existing fast wind structure. The fast wind structure has been calculated with $M_{in}=3{\times}10^{-6}M_{\odot}yr^{-1}$ and ${\upsilon}_{in}=1000km/sec$, which velocity is higher than the critical velocity relating to the initial radiative cooling. The fast wind becomes initially adiabatic. After a shell formation time of ${\sim}4000yrs$, the wind becomes radiative cooling at the shell zone, forming a thin dense radiative shell and an adiabatic wind bubble afterward. When supernova explodes in the wind center at 20,000yrs after the wind evolves, the supernova ejecta, which has a dense distribution of ${\rho}{\propto}r^{-n}$(here we have n = 9), interacts initially with, the understood wind zone, producing forward and reverse shocks. The reverse shock heats the supernova ejecta and its temperature increases. In this study, as the mass of the supernova ejecta is larger than that of the wind shell ($M_{ej}=5M_{\odot}$, $M_{sw}=2M_{\odot}$), we can conform two shell structures: an outer shell by the supernova ejecta and a secondarily shocked wind shell by it. The secondarily shocked wind shell should accelerates in this case to be R-T unstable, consequently producing the knots.

  • PDF

Reserve capacity of fatigue damaged internally ring stiffened tubular joints

  • Thandavamoorthy, T.S.
    • Steel and Composite Structures
    • /
    • v.4 no.2
    • /
    • pp.149-167
    • /
    • 2004
  • Offshore platforms have to serve in harsh environments and hence are likely to be damaged due to wave induced fatigue and environmental corrosion. Welded tubular joints in offshore platforms are most vulnerable to fatigue damage. Such damages endanger the integrity of the structure. Therefore it is all the more essential to assess the capacity of damaged structure from the point of view of its safety. Eight internally ring stiffened fatigue damaged tubular joints with nominal chord and brace diameter of 324 mm and 219 mm respectively and thickness 12 mm and 8 mm respectively were tested under axial brace compression loading to evaluate the reserve capacity of the joints. These joints had earlier been tested under fatigue loading under corrosive environments of synthetic sea water and hence they have been cracked. The extent of the damage varied from 35 to 50 per cent. One stiffened joint was also tested under axial brace tension loading. The residual strength of fatigue damaged stiffened joint tested under tension loading was observed to be less than one fourth of that tested under compression loading. It was observed in this experimental investigation that in the damaged condition, the joints possessed an in-built load-transfer mechanism. A bi-linear stress-strain model was developed in this investigation to predict the reserve capacity of the joint. This model considered the strain hardening effect. Close agreement was observed between the experimental and predicted results. The paper presents in detail the experimental investigation and the development of the analytical model to predict the reserve capacity of internally ring stiffened joints.

Effect of Blade Leading Edge Sweep on the Performance of a High Pressure Centrifugal Compressor Impeller

  • Wang, Hongliang;Xi, Guang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.823-827
    • /
    • 2008
  • The effects of blade leading edge sweep on both the aerodynamic performance and the structure stress of a high pressure centrifugal compressor impeller are numerically investigated. Changes in the flow structure occur as a result of the effect of leading edge sweep on the loading distribution in the tip region. The flow separation is avoided by introducing a sweep of the main blade leading edge and the strength of shock is reduced at the same time. Backswept of the leading edge is found to be beneficial to the impeller performance improving. On the other hand, the structural analysis indicated that high rotating speed of the impeller will cause substantial high bending stresses and radial deflections of the blade. Studies have shown that it is possible to control the stress distribution along the tip and root of the blade by slight adjustments to the sweep angle of the leading edge. These adjustments may be used to design the impeller with lower blade root stress distribution without aerodynamics performance penalty.

  • PDF

Optical Sensor Support Structure for Geo-stationary Satellite (정지궤도 위성의 광학 센서 지지 구조물)

  • Kim, Chang-Ho;Kim, Kyung-Won;Kim, Sun-Won;Lim, Jae-Hyuk;Hwang, Do-Soon
    • Journal of Satellite, Information and Communications
    • /
    • v.5 no.2
    • /
    • pp.8-13
    • /
    • 2010
  • Satellite structure should be designed to accommodate and support safely the payload and equipments necessary for its own missions and to secure satellite and payloads from severe launch environments. The launch environments imposed on satellites are quasi-static accelerations, aerodynamic loads, acoustic loads and shock loads. Especially when optical payload is accommodated, satellite structure usually adopts the optical bench consisting of composite material not only to support and secure but also to guarantee good pointing stability against extreme thermal environments. This paper deals with optical bench and support structure which shall be designed to minimize the loads transferred to optical payloads from satellite.

OBSERVATIONS OF STAR FORMATION INDUCED BY GALAXY-GALAXY AND GALAXY-INTERGALACTIC MEDIUM INTERACTIONS WITH AKARI

  • Suzuki, T.;Kaneda, H.;Onaka, T.
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.243-248
    • /
    • 2012
  • Nearby spiral galaxies M101 and M81 are considered to have undergone a galaxy-galaxy interaction. M101 has experienced HI gas infall due to the interaction. With AKARI far-infrared (IR) photometric observations, we found regions with enhanced star forming activity, which are spatially close to regions affected by the interaction. In addition, the relation between the star formation rate (SFR) and the gas content for such regions shows a significant difference from typical spiral arm regions. We discuss possible explanations for star formation processes on a kiloparsec scale and the association with interaction-triggered star formation. We also observed the compact group of galaxies Stephan's Quintet (SQ) with the AKARI Far-infrared Surveyor (FIS). The SQ shows diffuse intergalactic medium (IGM) due to multiple collisions between the member galaxies and the IGM. The intruder galaxy NGC 7318b is currently colliding with the IGM and causes a large-scale shock. The 160 micron image clearly shows the structure along the shock ridge as seen in warm molecular hydrogen line emission and X-ray emission. The far-IR emission from the shocked region comes from the luminous [CII]$158{\mu}m$ line and cold dust (~ 20 K) that coexist with molecular hydrogen gas. Survival of dust grains is indispensable to form molecular hydrogen gas within the collision age (~ 5 Myr). At the stage of the dusty IGM environment, [CII] and $H_2$ lines rather than X-ray emission are powerful cooling channels to release the collision energy.

Development Process of Mechanical Structure for a Large Radar (대형 레이더 기계구조부 개발 절차)

  • Shin, Dongjun;Lee, Jonghak;Kang, Youngsik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.1-11
    • /
    • 2017
  • In this paper, design requirements of the large radar were investigated, and development was performed through the analysis and design. Large radar should be designed by bearing the 75 knot wind force and $20kg/m^2$ ice mass as operating conditions in order to meet structural stability, and driving torque and bearing load were calculated for securing the driving stability. Thermal dissipation analysis was performed considering TRM and DC-DC Converter's limitation temperature by $50^{\circ}C$ ambient temperature condition in order to attain thermal stability, and PSD and shock analysis were carried out by using MIL-STD-810G vibration and shock specification in order to transport and installation of the large radar. As a result, all components of large radar could secure the structural stability more than 2.8 factor of safety, and driving stability was also secured with adequate bearing fatigue life. Thermal stability was attained by allowable max temperature 88.7 C of the TRM, and structural stability for transportation and installation of the large radar was also secured more than 5 factor of safety. After it was transported and installed to the radar site, operating capability was finally verified by rotating the large radar.

COSMIC RAY SPECTRUM IN SUPERNOVA REMNANT SHOCKS

  • Kang, Hye-Sung
    • Journal of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.25-39
    • /
    • 2010
  • We perform kinetic simulations of diffusive shock acceleration (DSA) in Type Ia supernova remnants (SNRs) expanding into a uniform interstellar medium (ISM). Bohm-like diffusion due to self-excited $Alfv\acute{e}n$ waves is assumed, and simple models for $Alfv\acute{e}nic$ drift and dissipation are adopted. Phenomenological models for thermal leakage injection are considered as well. We find that the preshock gas temperature is the primary parameter that governs the cosmic ray (CR) acceleration efficiency and energy spectrum, while the CR injection rate is a secondary parameter. For SNRs in the warm ISM of $T_0\lesssim10^5K$, if the injection fraction is $\xi\gtrsim10^{-4}K$, the DSA is efficient enough to convert more than 20% of the SN explosion energy into CRs and the accelerated CR spectrum exhibits a concave curvature flattening to $E^{-1.6}$, which is characteristic of CR modified shocks. Such a flat source spectrum near the knee energy, however, may not be reconciled with the CR spectrum observed at Earth. On the other hand, SNRs in the hot ISM of$T_{0}\approx10^{6}K$ with a small injection fraction, $\xi$<$10^{-4}$, are inefficient accelerators with less than 10% of the explosion energy getting converted to CRs. Also the shock structure is almost test-particle like and the ensuing CR spectrum can be steeper than $E^{-2}$. With amplified magnetic field strength of order of $30{\mu}G$ $Alfv\acute{e}n$ waves generated by the streaming instability may drift upstream fast enough to make the modified test-particle power-law as steep as $E^{-2.3}$, which is more consistent with the observed CR spectrum.

A miniaturized turn-counting sensor using geomagnetism for small-caliber ammunition fuzes (지구자기장을 이용한 소구경 탄약 신관용 소형 회전수 계수 센서)

  • Yoon, Sang-Hee;Lee, Seok-Woo;Lee, Young-Ho;Oh, Jong-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.17-23
    • /
    • 2007
  • This paper presents a miniaturized turn-counting sensor (TCS) where the geomagnetism and high-rpm rotation of ammunition are used to detect the turn number of ammunition for applications to small-caliber turn-counting fuzes. The TCS, composed of cores and a coil, has a robust structure with no moving part for increasing the shock survivability in the gunfire environments of ${\sim}30,000$ g's. The TCS is designed on the basis of the simulation results of an electromagnetic analysis tool, $Maxwell^{(R)}$3D. In experimental study, the static TCS test using a solenoid-coil apparatus and the dynamic TCS test (firing test) have been made. The presented TCS has shown that the induction voltage of $6.5{\;}mV_{P-P}$ is generated at the magnetic flux density of 0.05 mT and the rotational velocity of 30,000 rpm. From the measured signal, the TCS has shown the SNR of 44.0 dB, the nonlinearity of 0.59 % and the frequency-normalized sensitivity of $0.26{\pm}0.01{\;}V/T{\cdot}Hz$ in the temperature range of $-30{\sim}+43^{\circ}C$. Firing test has shown that the TCS can be used as a turn-counting sensor for small-caliber ammunition, verifying the shock survivability of TCS in high-g environments.