• Title/Summary/Keyword: Shock Speed

Search Result 377, Processing Time 0.03 seconds

Minimization of Shifting Shock of Tractor PST using SimulationX (SimulationX를 이용한 트랙터 PST 변속 충격 최소화 연구)

  • Eom, Tae Ho;Lee, Chul-Hee
    • Journal of Drive and Control
    • /
    • v.15 no.3
    • /
    • pp.36-42
    • /
    • 2018
  • Agricultural tractors require frequent shifting to improve operation efficiency, and PST (Powershift Transmission) is considered as a suitable transmission. However, due to the inherent characteristics of the PST, shocks arise during shifting, which imparts a negative effect on the operator. Therefore, in order to improve the transmission performance of the tractor PST, researches on various methods including the hydraulic system circuit, the engine input speed control, and the mechanical system of the transmission are steadily being conducted. In this study, in order to reduce the impact of PST on a shift based on SimulationX software, we analyzed the characteristics of the input signal of PCV (Pressure Control Valve) through sensitivity analysis and verified the simulation model through actual vehicle test. Optimization was performed for minimizing the shift shock for some of the parameters of the input signal at constant temperature and RPM conditions.

A target scoring technique using acoustic sensors (음향센서를 이용한 명중도 계측기법)

  • Choi, Ju-Ho;Kim, Yun-Gyeom;Lyou, Jun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.1 no.1
    • /
    • pp.38-42
    • /
    • 1995
  • This paper presents a target scoring method using shock wave signals, which are generated from the supersonic speed of a projectile. The shock wave is detected from three acoustic sensors located in the target plane and the difference of the delay times are measured. The target coordinates are calculated from the effective propagation of velocity (EPV) and the delay times of the shock wave; and the EPV is from the projectile velocity and the delay time. With a comparison between the measurement result and the known coordinates, the accuracy and the usefulness of the proposed scheme is validated.

  • PDF

Numerical Analysis for the Performance of an Axial-flow Compressor with Three-Dimensional Viscous Effect (삼차원 점성 효과를 고려한 축류 압축기의 성능에 대한 수치해석)

  • Han Y. J.;Kim K. Y.;Ko S. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.182-187
    • /
    • 2003
  • Numerical analysis of three-dimensional vicous flow is used to compute the design speed operating line of a transonic axial-flow compressor. The Navier-Stokes equation was solved by an explicit finite-difference numerical scheme and the Baldwin-Lomax turbulence model was applied. A spatially-varying time-step and an implicit residual smoothing were used to improve convergence. Two-stage axial compressor of a turboshaft engine developed KARI was chosen for the analysis. Numerical results show reasonably good agreements with experimental measurements made by KARI. Numerical solutions indicate that there exist a strong shock-boundary layer interaction and a subsequent large flow separation. It is also observed that the shock is moved ahead of the blade passage at near-stall condition.

  • PDF

Magnetic Cloud and its Interplanetary Shock Sheath as a Modulator of the Cosmic Ray Intensity (우주선 Intensity 조정자로서 자기구름과 그 주위의 행성간 충격파 sheath 영역의 역할)

  • Oh, Su-Yeon
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.2
    • /
    • pp.149-156
    • /
    • 2008
  • Forbush Decreases (FDs) are representative events of abrupt decrease in galactic cosmic ray intensity. They are known to be strongly associated with solar wind events such as interplanetary shock (IP shock) and magnetic cloud (MC). In order to examine effectiveness of the MC on FDs, I studied the 44 MCs that occurred during the 2 years from 1998 to 1999 and investigated the properties of interplanetary magnetic field (IMF) and solar wind. As a result, I found that 11 out of 44 MCs are associated with the FDs. In particularly, it is noted that the FDs are driven by the IP shock sheaths which are associated with over 13 nT of IMF magnitude, 3 nT of IMF turbulence, and 550km/s of solar wind speed. This result indicates that magnetic cloud and its interplanetary shock sheath work as a modulator of the cosmic ray intensity.

Impact shock and kinematic characteristics of the lower extremity's joint during downhill running (내리막 달리기의 충격 쇼크와 신체 관절의 운동학적 특징)

  • Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.4
    • /
    • pp.117-129
    • /
    • 2005
  • The purpose of this study was to characterize the impact shock wave and its attenuation, and the kinematic response of the lower extremity's joints to the impact shock during downhill running in which the lower extremity's extensor acts dominantly. For this study, fifteen subjects(mean age:$27.08{\pm}4.39$; mass:$76.30{\pm}6.60$; height:$177.25{\pm}4.11$) were required to run on the 0% grade treadmill and downhill grades of 7%, and 15% in random at speed of their preference. When the participant run, acceleration at the tibia and the sacrum and kinematic data of the lower extremity were collected for 20s so as to provide at least 5 strides for analysis at each grade. Peak impact accelerations were used to calculate shock attenuation between the tibia and sacrum in time domain at each grade. Fast Fourier transformation(FFT) and power spectral density(PSD) techniques were used to analyze impact shock factors and its attenuation in the frequency domain. Joint coordinate system technique was used to compute angular displacement of the ankle and knee joint in three dimension. The conclusions were drawn as fellows: 1. Peak impact accelerations of the tibia and sacrum in downhill run were greater than that of 0% grade run, but no significant between conditions. Peak shock of PSD resembled also in pattern of peak impact acceleration. The wave of impact shock attenuation between the tibia and sacrum decreased with increasing grade, but didn't find a significant difference between grade conditions. 2. Adduction/abduction, flexion/extention, and internal/external rotation of the ankle and knee joints at support phase between grade conditions didn't make much difference. 3. At grade of 7% and 15%, there were relationship between the knee of the flexion/extension movement and peak impact acceleration during heel strike and found also it in the ankle of plantar/dorsiflexion at grade of 15%.

Tool Wear in High Speed Face Milling Using CBN Tool (CBN 공구를 이용한 고속 정면밀링시의 공구마멸)

  • 최종순
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.332-338
    • /
    • 2000
  • The high speed machining is now one of the most effective manufacturing methods to achive higher productivity. However, due to the increased cutting temperatures caused by increased cutting speed, tool wear become larger. Especially in high speed face milling, cutting tools are exposed not only to high cutting temperatures, but also to mechanical and thermal shock stresses. It is essential, therefore, to know the wear characteristics of tool materials in high speed machining. This study presents an experimental investigation of the cutting performance of CBN tools in high speed face milling of gray cast iron FC25. The effect of cutting conditions and cutting length on flank wear of CBN tools and roughness of machined surfaces is investigated. The cutting parameters involved were ; cutting speeds in the range of 600to 1800 m/min, feed of 0.1 mm/tooth, and depth of cut of 0.3mm.

  • PDF

EFFECTS OF WAVE-PARTICLE INTERACTIONS ON DIFFUSIVE SHOCK ACCELERATION AT SUPERNOVA REMNANTS

  • Kang, Hyesung
    • Journal of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.49-63
    • /
    • 2013
  • Nonthermal radiation from supernova remnants (SNRs) provides observational evidence and constraints on the diffusive shock acceleration (DSA) hypothesis for the origins of Galactic cosmic rays (CRs). Recently it has been recognized that a variety of plasma wave-particle interactions operate at astrophysical shocks and the detailed outcomes of DSA are governed by their complex and nonlinear interrelationships. Here we calculate the energy spectra of CR protons and electrons accelerated at Type Ia SNRs, using time-dependent, DSA simulations with phenomenological models for magnetic field amplification due to CR streaming instabilities, Alf$\acute{e}$enic drift, and free escape boundary. We show that, if scattering centers drift with the Alf$\acute{e}$en speed in the amplified magnetic fields, the CR energy spectrum is steepened and the acceleration efficiency is significantly reduced at strong CR modified SNR shocks. Even with fast Afv$\acute{e}$nic drift, DSA can still be efficient enough to develop a substantial shock precursor due to CR pressure feedback and convert about 20-30% of the SN explosion energy into CRs. Since the high energy end of the CR proton spectrum is composed of the particles that are injected in the early stages, in order to predict nonthermal emissions, especially in X-ray and ${\gamma}-ray$ bands, it is important to follow the time dependent evolution of the shock dynamics, CR injection process, magnetic field amplification, and particle escape. Thus it is crucial to understand the details of these plasma interactions associated with collisionless shocks in successful modeling of nonlinear DSA.

Reflection of Plane Shock Wave over Concave and Convex Walls (오목, 볼록면에서 평면충격파의 반사)

  • JEON, Heung-Kyun;KWON, Jin-Kyung;KWON, Soon-Bum
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.11
    • /
    • pp.1473-1480
    • /
    • 1999
  • In the case of Impingement of plane moving shock wave over concave or convex double wedges (pseudo-stationary flow) and cylindrical walls (truly non-stationary flow), it Is expected that there are transitions from regular reflection to Mach reflection or vice versa In shock wave reflections. In these connections, it is necessary to verify the various of reflection process and transition angle for the reflection problems In double wedges, and to verify the transition angle, effects of curvature radius and initial wall angle on it for the reflection problems In cylindrical walls. Especially, we focused our attention to confirm the existence of hysteresis phenomenon induced by the different transition processes, and Neumann paradox, which is a small discrepancy between theoretical and experimental transition angles. Experiments were carried out by using the shock tube of $6{\times}6cm^2$, and high speed photographic technique consisted of delay unit, triggering system, light source of Xe lamp and so on was used for flow visualization.

Design/Construction and Performance Test of Hypersonic Shock Tunnel Part ii : Construction and Performance Test of Hypersonic Shock Tunnel (극초음속 충격파 풍동 설계/구축 및 성능시험 Part II : 극초음속 충격파 풍동 구축 및 성능 시험)

  • Lee, Hyoung-Jin;Lee, Bok-Jik;Kim, Sei-Hwan;Jeung, In-Seuck
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.4
    • /
    • pp.328-336
    • /
    • 2008
  • The shock tunnel as a hypersonic ground test facility was designed, constructed and its performance test was conducted to reproduce the high speed flow which the hypersonic propulsion system is encountered. The design points were understood and the conceptual design was completed using the quasi one dimensional operation analysis code. After that, the specific performance and compartment design were completed using CFD simulation as the part analysis. The facility was then constructed according to those design results and the performance test was conducted for various operation conditions. In this paper, we suggested the compartment design method using CFD analysis, construction process and various performance test results in detail.

The Investigation of Detonation Characteristics of Ethylene Oxide Mixture by Using Incident Shock Tube Technique (입사 충격파관을 이용한 에틸렌 옥사이드 혼합물의 데토네이션 특성연구)

  • Moon, J.H.;Chung, J.D.;Kang, J.G.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.5
    • /
    • pp.121-134
    • /
    • 1994
  • Shock tube investigation of ethylene oxide-$0_{2}-N_{2}$ mixture have been performed to reveal detonation characteristics of the mixture in terms of detonation pressure and speed. Theoretical calculation of thermodynamic parameters at the Chapmann-Jouguet detonation of the mixture has been also performed. A comparision of the observed results with the calculated ones can lead us to predict the detonation parameters of ethylene oxide in an artificial air. In addition, we have observed ignition delay times of ethylene oxide mixtures. The best fit of the observed delay times to Arrhenius gas kinetic relation gives : ${\tau}=10^{-144}{e{xp}}(E_a/RT)[C_{2}H_{4}O]^{-4.8}[O_{2}]^{-12.4}[N_{2}]^{-14.1}$ $E_a=3.67kcal/mole$ The observed activation energy is markedly reduced, compared with the case of ethylene oxide diluted in Ar. It could be due to the factor that $N_2$ play a role as detonation promoter yielding very reactive NOx radicals.

  • PDF