• Title/Summary/Keyword: Shock Mechanism

Search Result 357, Processing Time 0.024 seconds

Numerical Study of Electrohydraulic Forming Using an Arbitrary Lagrange-Eulerian Method (Arbitrary Lagrange-Eulerian 기법을 활용한 액중 방전 성형의 해석적 연구)

  • Woo, M.A.;Noh, H.G.;Song, W.J.;Kang, B.S.;Kim, J.
    • Transactions of Materials Processing
    • /
    • v.25 no.1
    • /
    • pp.49-55
    • /
    • 2016
  • Electrohydraulic forming (EHF) is a high-speed forming process that uses an electric arc discharge in water. Shock waves resulting from the electric arc discharge are propagated to the blank through water and the blank moves toward the die. Advantages of EHF include improved formability due to the high-speed process and reduction of the bouncing effect. In the current study, a numerical simulation of EHF was developed using LS-DYNA. In the simulation, the model for the electric arc was assumed as an adiabatic gas expansion and an Arbitrary Lagrange-Eulerian (ALE) multi material formulation was used to describe the interaction between the electric arc and the water. In order to model the Fluid-Structure Interaction (FSI), a coupling mechanism was used. The blank of Al 1100-O was simulated using shell elements. The results of the simulation showed that the blank was deformed due to the pressure propagation of water and the bouncing effect did not affect the formability of blank.

NUMERICAL ANALYSIS OF TWO- AND THREE-DIMENSIONAL SUBSONIC TURBULENT CAVITY FLOWS (2차원과 3차원 아음속 공동 유동 특성에 대한 수치적 연구)

  • Choi, Hong-Il;Kim, Jae-Soo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.187-193
    • /
    • 2007
  • The flight vehicles have cavities such as wheel wells and bomb bays. The flow around a cavity is characterized as unsteady flow because of the formation and dissipation of vortices due to the interaction between the freestream shear layer and cavity internal flow, the generation of shock and expansion waves. Resonance phenomena can damage the structures around the cavity and negatively affect aerodynamic performance and stability. In the present study, numerical analysis was performed for cavity flows by the unsteady compressible three dimensional Reynolds-Averaged Navier-Stokes (RANS) equations with Wilcox's ${\kappa}\;-\;{\omega}$ turbulence model. The cavity has the aspect ratios of 2.5, 3.5 and 4.5 for two-dimensional case, same aspect ratios with the W/D ratio of 2 for three-dimensional case. The Mach and Reynolds numbers are 0.53 and 1,600,000 respectively. The flow field is observed to oscillate in the "shear layer mode" with a feedback mechanism. Based on the SPL(Sound Pressure Level) analysis of the pressure variation at the cavity trailing edge, the dominant frequency was analyzed and compared with the results of Rossiter's formula. The MPI(Message Passing Interface) parallelized code was used for calculations by PC-cluster.

  • PDF

Effect of Ginseng Saponin on the Integrity of Lysosomes (인삼사포닌이 Lysosome의 안정성에 미치는 영향)

  • 원광애;정노팔
    • Journal of Ginseng Research
    • /
    • v.9 no.1
    • /
    • pp.119-127
    • /
    • 1985
  • The effect of ginseng saponin on acid phosphatase (AP) activity in liver Iysosomes was investigated and the mechanism by which ginseng saponin may function on the integrity of Iysosomes was discussed. The experimental results obtained are summarized as follows; 1, A very marked increase in the AP activity was observed in the supernatant of hypotonic medium, as compared with that of isotonic medium, indicating that the hypoosmotic shock per so results in activation through osmotic Iysis of particles. 2. Ginseng saponin had no effect on the activity of AP if once released from Iysosomes when Iysed in the hypotonic medium, suggesting that ginseng saponin has no effect on the enzyme molecules per se. 3. The AP activity in isotonic medium suspensions was decreased at the concentrations of 10-6, 10-5 and 10-4% of ginseng saponin, but increased at 10-2 and 10-1%. It's suggested that ginseng saponin enhances the integrity of Iysosomes at 10-6, 10-5 and 10-4%, but decreases it at 10-2 and 10-1%. 4. Suspending particles in distilled water resulted in no correlation of AP activity with treatment with ginseng saponin. 5, The AP activity was decreased in the presence of ATP, showing the possible significance of ATP as a Iysosomal stabilizer and the possibility that ginseng saponin may affect a membrane bound ATPase system by which Iysosomal AP release may be controlled.

  • PDF

Characteristics and Outcomes of Trauma Patients via Emergency Medical Services

  • Cho, Dae Hyun;Lee, Jae Gil
    • Journal of Trauma and Injury
    • /
    • v.30 no.4
    • /
    • pp.120-125
    • /
    • 2017
  • Purpose: The aim of this study was to identify clinical outcome and characteristics of trauma patients via emergency medical services (EMS). Methods: Medical records of the trauma patients visiting the emergency department were retrospectively collected and analyzed from January 2015 to June 2016 in the single institution. Of 529 registered patients, 371 patients were transported by - were enrolled. The parameters including age, gender, injury mechanism, Glasgow coma scale on arrival, presence of shock (systemic blood pressure <90 mmHg) on arrival, time to arrival from accident to emergency room (ER), need for emergency procedures such as operation or angioembolization, need for intensive care unit (ICU) admission, injury severity score (ISS), the trauma and injury severity score, revised trauma score (RTS), length of stay, and mortality rate were collected. The SAS version 9.4 (SAS Institute, Cary, NC, USA) was used for the data analysis. Results: Arrival time from the field to the ER was significantly shorter in EMS group. However, overall outcomes including mortalities, length of stay in the ICU and hospital were same between both groups. Age, ISS, RTS, and injury mechanisms were significantly different in both groups. ISS, RTS, and age showed significant influence on mortality statistically (p<0.05). Conclusions: The time to arrival of EMS was fast but had no effect on length of hospital stay, mortality rate. Further research that incorporates pre-hospital factors influence clinical outcomes should be conducted to evaluate the effectiveness of such a system in trauma care of Korea.

Physics of Solar Flares

  • Magara, Tetsuya
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.26.1-26.1
    • /
    • 2010
  • In this talk we outline the current understanding of solar flares, mainly focusing on magnetohydrodynamic (MHD) processes. A flare causes plasma heating, mass ejection, and particle acceleration which generates high-energy particles. The key physical processes producing a flare are: the emergence of magnetic field from the solar interior to the solar atmosphere (flux emergence), formation of current-concentrated areas (current sheets) in the corona, and magnetic reconnection proceeding in a current sheet to cause shock heating, mass ejection, and particle acceleration. A flare starts with the dissipation of electric currents in the corona, followed by various dynamic processes that affect lower atmosphere such as the chromosphere and photosphere. In order to understand the physical mechanism for producing a flare, theoretical modeling has been develops, where numerical simulation is a strong tool in that it can reproduce the time-dependent, nonlinear evolution of a flare. In this talk we review various models of a flare proposed so far, explaining key features of individual models. We introduce the general properties of flares by referring observational results, then discuss the processes of energy build-up, release, and transport, all of which are responsible for a flare. We will come to a concluding viewpoint that flares are the manifestation of the recovering and ejecting processes of a global magnetic flux tube in the solar atmosphere, which has been disrupted via interaction with convective plasma while rising through the convection zone.

  • PDF

Start-up Strategy for the Successful Operation of Continuous Fermentative Hydrogen Production (연속 혐기성 수소발효 공정에서 성공적인 start-up 방법)

  • Lee, Chang-Kyu
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.2
    • /
    • pp.99-106
    • /
    • 2013
  • The variations of performance and metabolites at an early stage were investigated for the successful start-up technology in continuous fermentative hydrogen production. Unsuccessful start-up was observed when the operation mode was changed from batch to continuous mode after the yield was reached to 0.5 mol $H_2$/mol $hexose_{added}$ by batch mode. $H_2$ production continued till 12 hours accompanied by butyrate production, but did not last with propionate production increase. It was suspected that the failure was due to the regrowth of propionic acid bacteria during batch mode which were inhibited by heat-shock but not completely killed. Thus, successful start-up was tried by early switchover from batch to continuous operation; continuous operation was started after the $H_2$ yield was reached to 0.2 mol $H_2$/mol $hexose_{added}$ by batch mode. Although $H_2$ production rate decreased at an early stage, stable $H_2$ yield of 0.8 mol $H_2$/mol $hexose_{added}$ was achieved after 10 days by lowering down propionate production. And it was also concluded that the reason for $H_2$ production decrease at an early stage was due to alcohol production by self detoxification mechanism against VFAs accumulation.

Low Frequency Vibration Energy Harvester Using Stopper-Engaged Dynamic Magnifier for Increased Power and Wide Bandwidth

  • Halim, Miah Abdul;Kim, Dae Heum;Park, Jae Yeong
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.707-714
    • /
    • 2016
  • We present a piezoelectric energy harvester with stopper-engaged dynamic magnifier which is capable of significantly increasing the operating bandwidth and the energy (power) harvested from a broad range of low frequency vibrations (<30 Hz). It uses a mass-loaded polymer beam (primary spring-mass system) that works as a dynamic magnifier for another mass-loaded piezoelectric beam (secondary spring-mass system) clamped on primary mass, constituting a two-degree-of-freedom (2-DOF) system. Use of polymer (polycarbonate) as the primary beam allows the harvester not only to respond to low frequency vibrations but also generates high impulsive force while the primary mass engages the base stopper. Upon excitation, the dynamic magnifier causes mechanical impact on the base stopper and transfers a secondary shock (in the form of impulsive force) to the energy harvesting element resulting in an increased strain in it and triggers nonlinear frequency up-conversion mechanism. Therefore, it generates almost four times larger average power and exhibits over 250% wider half-power bandwidth than those of its conventional 2-DOF counterpart (without stopper). Experimental results indicate that the proposed device is highly applicable to vibration energy harvesting in automobiles.

Aerodynamic Analysis of a Train Running in a Tunnel(I)-Aerodynamics of One-Train- (터널내를 주행하는 열차의 공기역학적 해석(I)-1열차의 공기 역학-)

  • Kim, Hui-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.8
    • /
    • pp.963-972
    • /
    • 1997
  • As a high-speed train enters a tunnel, a compression wave is generated ahead of it due to the piston action of train. The compression waves propagate along the tunnel and reflect at the exit of tunnel. A complex wave phenomenon appears in the tunnel, because of the successive reflections of the pressure waves at the exit and entrance of tunnel. The pressure waves give rise to large pressure transients which impose the fluctuating loads on the running train. It is highly needed that the pressure transients should be predicted to design the train body and to improve the comfortableness of the passengers in the train. In the present study, the pressure transients were calculated numerically for a wide range of train speed and compared with the previous tunnel tests. The calculation results agreed with ones of the tunnel tests, and the mechanism of pressure transients was made clear.

Aerodynamic Analysis of a Train Running in a Tunnel(II)-Aerodynamics of Two-Trains- (터널내를 주행하는 열차의 공기역학적 해석(II)-2열차의 공기역학-)

  • Kim, Hui-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.8
    • /
    • pp.983-995
    • /
    • 1997
  • As a high-speed train enters a tunnel, a compression wave is generated ahead of it due to the piston action of train. The compression waves propagate along the tunnel and reflect backward at the exit of tunnel. A complex wave phenomenon appears in the tunnel, because of the successive reflections of the pressure waves at the exit and entrance of tunnel. The pressure waves can give rise to large pressure transients which impose the fluctuating loads on the running train. It is highly needed that the pressure transients should be predicted to design the train body and to improve the comfort for the passengers in the train. In the present study, the pressure transients and aerodynamic drag for two-trains running in a tunnel were calculated numerically for a wide range of train speed, and compared with the results of the previous tunnel tests and calculations for one train. The present calculation results agreed with ones of the tunnel tests, and the mechanism of pressure transients was made clear.

The Effect of Woohwangcheongsim-won for Delayed Neuronal Death in OGD(Oxygen-Glucose Deprivation) Model (배양 대뇌신경세포의 저당-저산소증 모델에서 우황청심원에 의한 세포사 방지 연구)

  • 원철환;정승현;신길조;문일수;이원철
    • The Journal of Korean Medicine
    • /
    • v.23 no.4
    • /
    • pp.125-139
    • /
    • 2002
  • Objectives: The purpose of this investigation is to evaluate the effects of Woohwangcheongsim-won and to study the mechanism for neuronal death protection in OGD (oxygen-glucose deprivation) model with embryonic day 20 (E20) cortical cells of a rat (Sprague Dawley). Methods: E20 cortical cells were dissociated in neurobasal media and grown for 14 days in vitro (DIV). On 14 DIV, Woohwangcheongsim-won was added to the culture media for 72 hrs. On 17 DIV, cells were given an oxygen-glucose deprivation shock (2hrs and 4hrs) and further incubated in normoxia for another three days. On 20 DIV, Woohwangcheongsim-won's effects for neuronal death protection were evaluated by LDH assay and the mechanisms were studied by Bcl-2, Bak, Bax, caspase family. Results & Conclusions: 1. This study indicates that Woohwangcheongsim-won's effects for neuronal death protection in OGD model is confirmed by LDH assay in culture method of embryonic day 20(E20) cortical neuroblasts. 2. Woohwangcheongsim-won's mechanisms for neuronal death protection in OGD model are to restrain inflow of cytochrome c into cellularity caused by Bcl-2 increase (2hrs and 4hrs), to reduce the caspase cascade initiator caspase-8 (4hrs).

  • PDF