• Title/Summary/Keyword: Shock Load

Search Result 249, Processing Time 0.021 seconds

Comparison of Acceleration of Vibration Isolator and Accelerometer Attached Vibration Isolator Using Numerical Analysis (수치 해석을 이용하여 제진대와 제진대에 부착된 가속도계의 가속도 비교)

  • Shin, Dong Ho;Lee, Jung Woo;Oh, Jae-Eung;Lee, Jung Youn
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.1
    • /
    • pp.17-24
    • /
    • 2013
  • The process of producing high precision and light weight product is always exposed to impact load or shock. Because of this, isolator device is required. To measure the response of the isolator, accelerometer is practically used. However, the measured response of the accelerometer is different to the response of the isolator. To predict the response of the accelerometer and the isolator, 2-DOF damped system with an input shock is modeled using numerical analysis. 1-DOF damped system with a base excitation is also used to predict the response of the isolator. The mass ratio, damping ratio, and natural frequency ratio are then varied. The predicted responses from the two modeling approaches are compared and large errors are found.

Evolution of dynamic mechanical properties of heated granite subjected to rapid cooling

  • Yin, Tubing;Zhang, Shuaishuai;Li, Xibing;Bai, Lv
    • Geomechanics and Engineering
    • /
    • v.16 no.5
    • /
    • pp.483-493
    • /
    • 2018
  • Experimental study of the deterioration of high-temperature rock subjected to rapid cooling is essential for thermal engineering applications. To evaluate the influence of thermal shock on heated granite with different temperatures, laboratory tests were conducted to record the changes in the physical properties of granite specimens and the dynamic mechanical characteristics of granite after rapid cooling were experimentally investigated by using a split Hopkinson pressure bar (SHPB). The results indicate that there are threshold temperatures ($500-600^{\circ}C$) for variations in density, porosity, and P-wave velocity of granite with increasing treatment temperature. The stress-strain curves of $500-1000^{\circ}C$ show the brittle-plastic transition of tested granite specimens. It was also found that in the temperature range of $200-400^{\circ}C$, the through-cracks induced by rapid cooling have a decisive influence on the failure pattern of rock specimens under dynamic load. Moreover, the increase of crack density due to higher treatment temperature will result in the dilution of thermal shock effect for the rocks at temperatures above $500^{\circ}C$. Eventually, a fitting formula was established to relate the dynamic peak strength of pretreated granite to the crack density, which is the exponential function.

Development Trend of Shock-Absorbing Landing gear for Lunar Lander (달착륙선 충격흡수 착륙장치 개발동향)

  • Kim, Won-Seock;Kim, Sun-Won;Hwang, Do-Soon
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.9 no.1
    • /
    • pp.119-129
    • /
    • 2011
  • The soft landing of a lunar lander after the entrance of lunar orbit is an essential prerequisite for the accomplishment of the lander's lunar mission. During the landing process of a lunar lander, efficient shock absorption and stability maintenance are indispensible technology to protect payloads. Therefore, the landing gear is a crucial structural component of a lunar lander, it has to absorb the kinetic energy associated with touchdown and support the static load of the landing module in an upright position. In this paper, various landing gears of lunar landers which are being developed as well as which had been successfully landed on the moon surface are investigated. In the end, the Korean lunar lander, which is being designed for preliminary development model, is presented as an example of the lunar lander development.

  • PDF

Relationship between the time to positivity of blood culture and mortality according to the site of infection in sepsis

  • Um, Young Woo;Lee, Jae Hyuk;Jo, You Hwan;Kim, Joonghee;Kim, Yu Jin;Kwon, Hyuksool
    • Journal of The Korean Society of Emergency Medicine
    • /
    • v.29 no.5
    • /
    • pp.474-484
    • /
    • 2018
  • Objective: The time to positivity (TTP) of blood culture reflects bacterial load and has been reported to be associated with outcome in bloodstream infections. This study was performed to evaluate the relationship between the TTP of blood culture and the mortality rates associated with sepsis and septic shock according to the site of infection. Methods: We performed a retrospective cohort study on patients with sepsis and septic shock. The rates of blood culture positivity and mortality as well as the relationship between the TTP and 28-day mortality rate were compared among patients with different sites of infection, such as the lungs, abdomen, urogenital tract, and other sites. Results: A total of 2,668 patients were included, and the overall mortality rate was 21.6%. The rates of blood culture positivity and mortality were different among the different infection sites. There was no relationship between the TTP and mortality rates of total, lung, and urogenital infections. Patients with abdominal infections showed a negative correlation between the TTP and 28-day mortality rate. In patients with abdominal infections, a TTP<20 hours was independently associated with 28-day mortality compared with patients with negative blood culture (hazard ratio, 1.73; 95% confidence interval, 1.16-2.58). However, there was no difference in mortality rates of patients with a $TTP{\geq}20$ hours and a negative blood culture. Conclusion: The shorter TTP in patients with abdominal infections in sepsis and septic shock was associated with a higher 28-day mortality rate.

International Research Status on Spent Nuclear Fuel Structural Integrity Tests Considering Vibration and Shock Loads Under Normal Conditions of Transport (정상운반조건의 진동 및 충격하중을 고려한 사용후핵연료의 구조적 건전성 시험평가 해외연구현황)

  • Lim, JaeHoon;Cho, Sang Soon;Choi, Woo-seok
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.2
    • /
    • pp.167-181
    • /
    • 2019
  • Currently, the development of evaluation technology for vibration and shock load characteristics and spent nuclear fuel structural integrity under normal conditions of transport is being conducted in the Republic of Korea. This is the first such research conducted in the Republic of Korea and, thus, previous international studies need to be investigated and will be referred to in the ongoing project. Before 2000, several studies related to measurement of vibration and shock loads on spent nuclear fuel were conducted in the US. US national research institutes conducted uniaxial fuel assembly shaker tests, concrete block tests, and multi-axis fuel assembly tests between 2009 and 2016. In 2017, multi-modal transportation tests including road, sea, and rail transport were also performed by research institutes from the US, Spain and the Republic of Korea. Therefore, test preparation procedures, acceleration and strain measurement results, and finite-element and multi-body dynamics analysis were investigated. Based on the measured strain data, the preliminary conclusion was obtained that the measured strain was too small to cause damage to spent nuclear fuel rods. However, this conclusion is a preliminary conclusion that only reviews part of the results; a detailed review is being conducted in the US. The investigation of international studies on spent nuclear fuel structural integrity tests considering vibration and shock loads under normal conditions of transport in the US will be useful data for the project being conducted in the Republic of Korea.

Efficiency of Livestock Farming Wastewater Treatment by Trickling Filters (撒水濾床法에 依한 畜産廢水의 處理效果에 관한 연구)

  • Ahu, Soo Mi
    • Journal of Environmental Health Sciences
    • /
    • v.11 no.2
    • /
    • pp.17-27
    • /
    • 1985
  • The objectives of this study is to examine efficiency of swinery wastewater treatment by trickling filters' pilot plant. The results of this study are as follows: 1. The characteristics of sample. The BOD$_5$ was from 2,450 to 2,880mg/l, COD(KMnO$_4$ acid method) was from 910 to 1,064mg/l, and SS was from 920 to 990mg/l. The pH of influent was from 7.3 to 7.6, and the temperature of water was from 17.0$\circ$C to 22.5$\circ$C. 2. For experiment by recirculation, the BODs removal efficiency is 65.2% at recirculation ratio (r)=0, and 70.7% at r=1. The ramoval efficiency of this study is higher than NRC formula of U.S.A.. The recirculation is not significant effect on removal efficiency. 3. For experiment by hydraulic load, the BOD$_5$ removal rate decreased from 73.1% at $3.1m^3/m^2\cdot d$ to 65.3% at $9.2m^3/m^2\cdot d$. The design formula of this study which shows the removal rate of soluble BOD is $Le/Li =10^{-0.24} D/Q^{0.24}$ (Q: hydraulic load, D: depth of filter). 4. For experiment by organic load, the BOD$_5$ removal rate is increased from 70.2% at $0.77kg/m^3\cdot d$ to 75.4% at $4.28kg/m^3\cdot d$. We can obtain the straight line y=0.749 x (y: removed BOD, x :applied BOD) by the least squares method. 5. We can know that trickling filters is strong with the hydraulic load and the organic matter shock load. Here, we can judge that trickling filters is a good method for the treatment of swinery wastewater which containing high concentrated organic matter.

  • PDF

Field test and research on shield cutting pile penetrating cement soil single pile composite foundation

  • Ma, Shi-ju;Li, Ming-yu;Guo, Yuan-cheng;Safaei, Babak
    • Geomechanics and Engineering
    • /
    • v.23 no.6
    • /
    • pp.513-521
    • /
    • 2020
  • In this paper, due to the need for cutting cement-soil group pile composite foundation under the 7-story masonry structure of Zhenghe District and the shield tunnel of Zhengzhou Metro Line 5, a field test was conducted to directly cut cement-soil single pile composite foundation with diameter Ф=500 mm. Research results showed that the load transfer mechanism of composite foundation was not changed before and after shield tunnel cut the pile, and pile body and the soil between piles was still responsible for overburden load. The construction disturbance of shield cutting pile is a complicated mechanical process. The load carried by the original pile body was affected by the disturbance effect of pile cutting construction. Also, the fraction of the load carried by the original pile body was transferred to the soil between the piles and therefore, the bearing capacity of composite foundation was not decreased. Only the fractions of the load carried by pile and the soil between piles were distributed. On-site monitoring results showed that the settlement of pressure-bearing plates produced during shield cutting stage accounted for about 7% of total settlement. After the completion of pile cutting, the settlements of bearing plates generated by shield machine during residual pile composite foundation stage and shield machine tail were far away from residual pile composite foundation stage which accounted for about 15% and 74% of total settlement, respectively. In order to reduce the impact of shield cutting pile construction on the settlement of upper composite foundation, it was recommended to take measures such as optimization of shield construction parameters, radial grouting reinforcement and "clay shock" grouting within the disturbance range of shield cutting pile construction. Before pile cutting, the pile-soil stress ratio n of composite foundation was 2.437. After the shield cut pile is completed, the soil around the lining structure is gradually consolidated and reshaped, and residual pile composite foundation reaches a new state of force balance. This was because the condensation of grouting layer could increase the resistance of remaining pile end and friction resistance of the side of the pile.

Measurement and Analysis of Physical Environmental Load during Handling and Distribution of Domestic Fruits -Focused on Seongju Korean Melon

  • Jongmin Park;Donghyun Kim;Wontae Seo;Hyunmo Jung
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.29 no.2
    • /
    • pp.129-138
    • /
    • 2023
  • The proportion of agricultural products handled through the Agricultural Products Processing Center (APC) is also steadily increasing every year, and in the case of Seongju Korean melon, a total of 10 APCs of Nonghyup and farming association corporations are in operation, and the distribution ratio is about 60% based on total production. In this study, Seongju Korean melon was selected as a target to analyze the environment load during carrying (production farm ~ APC) in the production area and the transport environment load during distribution of domestic fruits, and to analyze the environmental load for handling at APC. The vertical average vibration intensity (overall Grms of 1~250 Hz) of truck transport measured at three transport routes from Seongju Korean melon producer ~ APC, Seongju ~ Seoul and Seongju ~ Jeju was about three times larger than that in the lateral direction and 4.5 times larger than that in the longitudinal direction, respectively. The frequency of occurrence of high-amplitude events (G) in the vertical direction compared to the measuring time was deeply related to pavement conditions in the order of unpaved farm-roads, concretepaved farm-roads, and asphalt-paved main-roads, but overall Grms for the entire frequency band is believed to have a greater impact on vehicle traveling speed than road conditions. On the other hand, the difference in the size and direction of the vibration intensity measured by the forklift truck's main-body and the attachment (fork carrier) during handling at Seongju Korean melon APC was clear, and the vibration intensity of the forklift truck's main-body was largely affected by the stiffness of the fork and the mast according to the handling weight. Based on the field-data of the transport environment during domestic distribution measured through this study, it is believed that it is possible to develop a lab-based simulation protocol for appropriate packaging design.

Validation study on numerical simulation of RC response to close-in blast with a fully coupled model

  • Gong, Shunfeng;Lu, Yong;Tu, Zhenguo;Jin, Weiliang
    • Structural Engineering and Mechanics
    • /
    • v.32 no.2
    • /
    • pp.283-300
    • /
    • 2009
  • The characteristic response of a structure to blast load may be divided into two distinctive phases, namely the direct blast response during which the shock wave effect and localized damage take place, and the post-blast phase whereby progressive collapse may occur. A reliable post-blast analysis depends on a sound understanding of the direct blast effect. Because of the complex loading environment and the stress wave effects, the analysis on the direct effect often necessitates a high fidelity numerical model with coupled fluid (air) and solid subdomains. In such a modelling framework, an appropriate representation of the blast load and the high nonlinearity of the material response is a key to a reliable outcome. This paper presents a series of calibration study on these two important modelling considerations in a coupled Eulerian-Lagrangian framework using a hydrocode. The calibration of the simulated blast load is carried out for both free air and internal explosions. The simulation of the extreme dynamic response of concrete components is achieved using an advanced concrete damage model in conjunction with an element erosion scheme. Validation simulations are conducted for two representative scenarios; one involves a concrete slab under internal blast, and the other with a RC column under air blast, with a particular focus on the simulation sensitivity to the mesh size and the erosion criterion.

Safety Evaluation of Net-type Debris Flow Protection System Using Numerical Analysis (수치해석을 이용한 네트형 토석류 방호시스템의 안전성 평가)

  • Lee, Eung-Beom;Lim, Hyun-Taek;Whang, Dae-Won;Lim, Chang-Su;Kim, Yong-Seong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.157-168
    • /
    • 2018
  • Recently, the occurrence of typhoons and heavy rainfall is increasing due to climate change. This causes increase in possibility of landslide damages in rural areas. However, in reality, the precise engineering stability assessment studies are still insufficient. Therefore, in order to reduce the landslide damages and effectively manage mountainous areas, the development of disaster prevention techniques is needed. In this study, to analyze the shock absorbing effect of the buffer-spring during application of dynamic impact load in the debris flow protection system, numerical analysis is carried out for each free field of the buffer-spring and the load sharing ratio of the buffer-spring is also examined. In addition, the field applicability is verified by comparison of the tensile strength of the conventional buffer-spring and the wedge type buffer-spring on various magnitudes of dynamic impact load. As a result of the study, it is found that the net-type debris protection system is effective to mitigate loss of properties and human lifes during landslide.