• Title/Summary/Keyword: Shock Excitation

Search Result 46, Processing Time 0.024 seconds

HALO EMISSION OF THE CAT’S EYE NEBULA, NGC 6543: SHOCK EXCITATION BY FAST STELLAR WINDS

  • Hyung, Siek;Lee, Seong-Jae
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.3
    • /
    • pp.173-180
    • /
    • 2002
  • Images taken with the Chandra X-ray telescope have for the the first time revealed the central, wind-driven, hot bubble (Chu et al. 2001), while Hubble Space Telescope (HST) WFPC2 images of the Cat's Eye nebula, NGC 6543, show that the temperature of the halo region of angular radius ~ 20", is much higher than that of the inner bright H II region. With the coupling of a photoionization calculation to a hydrodynamic simulation, we predict the observed 〔O III〕 line intensities of the halo region with the same O abundance as in the core H II region: oxygen abundance gradient does not appear to exist in the NGC 6543 inner halo. An interaction between a (leaky) fast stellar wind and halo gas may cause the higher excitation temperatures in the halo region and the inner hot bubble region observed with the Chandra X-ray telescope.

The Excitation of Waves Associated with a Collapsing Granule in the Photosphere and Chromosphere

  • Kwak, Hannah;Chae, Jongchul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.42.1-42.1
    • /
    • 2019
  • We investigate a collapsing granule event and the associated excitation of waves in the photosphere and chromosphere. Our observations were carried out by using the Fast Imaging Solar Spectrograph and the TiO 7057Å Broadband Filter Imager of the 1.6 meter Goode Solar Telescope of Big Bear Solar Observatory. During our observations, we found a granule which became significantly darker than neighboring granules. The edge of the granule collapsed within several minutes. After the collapse, transient oscillations occurred in the photospheric and chromospheric layers. The dominant period of the oscillations is close to 4.5 minutes in the photosphere and 4 minutes in the chromosphere. Moreover, in the Ca II-0.5Å raster image, we observed brightenings which are considered as the manifestation of shock waves. Based on our results, we suggest that the impulsive collapse of a granule can generate upward-propagating acoustic waves in the solar quiet region that ultimately develop into shocks.

  • PDF

Analysis on Environmental Test Specifications for Solar Panels of STSAT-2 (과학기술위성 2호 태양전지판의 환경시험 규격에 대한 고찰)

  • Jang, Tae-Seong;Kim, Hong-Bae;Woo, Sung-Hyun;Lee, Sang-Hyun;Nam, Myeong-Ryong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.957-961
    • /
    • 2005
  • A satellite component must withstand vibration caused when launch vehicle acoustics and engine rumble transfer to it through its structural mount. Components shall be subjected to environmental tests after manufacturing process thus the environmental test conditions are needed for component level test including vibration and shock. This paper deals with derivation of component-level environmental test specifications, especially for solar panels of STSAT-2(Science & Technology SATellite-2). Sine sweep random vibration, and shock test conditions were generated for solar panels by assuming the satellite as single-degree-of-freedom system with a base excitation.

  • PDF

Vibration Analysis of a Heavy Truck via Road Tests (주행시험에 의한 대형 트럭의 주행진동 특성 분석)

  • Song, Oh-Seop;Nam, Kyung-Mo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.266-271
    • /
    • 2009
  • Electronic equipments and a missile carried by heavy trucks are often subjected to vibration and shock excitation during their transportation. Electronic equipments are so vulnerable to vibration and shock input that it is necessary to know in advance the vibration level of the truck which cause the damage of equipments. Road tests of a heavy truck carrying a canister on different road conditions such as paved road, unpaved road, and washboard are performed and the effect of road conditions on the vibration characteristics are analyzed. Vibration levels were measured at various locations of the truck along the path through which vibration was transmitted. This study reveals that the velocity of the truck as well as the road surface conditions are main factors which affect the vibration levels of the truck. The power spectrum density of the measured vibration signal and the factors affecting the PSD are also analyzed in this paper.

Dynamic Characteristics Analysis on Antenna Equipment by Experimental Method (실험적 기법을 통한 안테나장비 동특성 분석)

  • Shin, Joon-Yub;Lee, Jong-Hak;Kang, Young-Sik;Choi, Ji-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.632-637
    • /
    • 2012
  • Antenna equipment is transported being assembled to moving equipment and often subjected to vibration and shock excitation during transportation. In these circumstances, structural safety of antenna equipment must be secured. Wire rope isolators are assembled between moving equipment and antenna equipment to reduce the level of vibration and shock. In this paper, a isolator that are suitable to the system is selected and dynamic characteristics analysis of driving on antenna equipment is conducted using real system and the result is compared with response analysis. Also modal test of array-antenna pack-assembly is conducted and structural safety of that is secured by reinforcing its structure.

  • PDF

CHAOTIC THRESHOLD ANALYSIS OF NONLINEAR VEHICLE SUSPENSION BY USING A NUMERICAL INTEGRAL METHOD

  • Zhuang, D.;Yu, F.;Lin, Y.
    • International Journal of Automotive Technology
    • /
    • v.8 no.1
    • /
    • pp.33-38
    • /
    • 2007
  • Since it is difficult to analytically express the Melnikov function when a dynamic system possesses multiple saddle fixed points with homoclinic and/or heteroclinic orbits, this paper investigates a vehicle model with nonlinear suspension spring and hysteretic damping element, which exhibits multiple heteroclinic orbits in the unperturbed system. First, an algorithm for Melnikov integrals is developed based on the Melnikov method. And then the amplitude threshold of road excitation at the onset of chaos is determined. By numerical simulation, the existence of chaos in the present system is verified via time history curves, phase portrait plots and $Poincar{\acute{e}}$ maps. Finally, in order to further identify the chaotic motion of the nonlinear system, the maximal Lyapunov exponent is also adopted. The results indicate that the numerical method of estimating chaotic threshold is an effective one to complicated vehicle systems.

A Study on the Manufacturing and Dynamic Charateristics of Vibration Absorber Using Piezoceramics and Isolation Pad (압전세라믹과 방진고무를 이용한 진동흡수장치의 제작과 동적특성 연구)

  • Heo, Seok;Kwak, Moon-k
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.477-482
    • /
    • 2002
  • This research is concerned with the study of an active vibration absorber using piezoelectric actuators and Isolation pad. The active isolation system consists of 4-pairs of PZT actuators bonded on the surface of an aluminum plate and a passive damping material. The active system is connected to the passive system in series. The Signals of the accelerometers are fed into the PZT actuator through the controller. We proposed a new control technique which can deal with the shock as well as the base excitation in this study. The Positive Acceleration Feedback(PAE) tuned to the natural frequency of the vibration isolation system is used to suppress the vibrations caused by the shock using the top accelerometer signal. The Negative Acceleration Feedback (NAF) based on the base acceleration signal is used to counteract the base motion. Experimental results show that the proposed active vibration isolation system can suppress vibrations.

  • PDF

Interactions of Spherical Acoustic Shock Waves with a Spherical Elastic Shell near a Free-Surface (자유표면 근처에서의 구형 셸과 충격파의 비정상 유체-구조물 상호작용 해석)

  • Lee, Min-Hyung;Lee, Beom-Heon;Lee, Seung-Yop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.1143-1148
    • /
    • 2002
  • This paper analyses the transient response of a spherical elastic shell located near fee surface and impinged by spherical step-exponential acoustic shock waves. The problem is solved through extension of a method (Huang, 1969) previously formulated for the excitation in an infinite domain, which employs the classical separation of variables, series solutions, and Laplace transform technique The effect of the free surface reflection is taken into account using the image source method. The reflection of the incident wave has been treated by the same image formulation. If the reflection of the pressure field scattered and radiated by the shell is considered, the problem becomes that of multiple scattering by two spheres. However, this is in general negligible considering errors inherent from other sources and that the scattered and radiated pressure waves emanating from the shell are small. Thus, the problem is reduced to that of a structure immersed in an infinite fluid and impinged upon the origin and the image incident.

Design of Elastomeric Bearing System and Analysis of it Mechanical Properties

  • Moon, Byung-Young;Kang, Gyung-Ju;Kang, Beom-Soo;Cho, Dae-Seung
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.20-29
    • /
    • 2004
  • This paper proposes a new type of bearing system. In this study, a method for design of on elastomeric bearing system and its mechanical property analysis are carried. Experimental and theoretical studies of the elastomeric bearings with fiber reinforcement were proved effective new lightweight bearing system. The fibers in the bearings for isolation are assumed to be flexible in extension, in contrast to the steel plates in the conventional bearing system. Several kinds of bearing systems in the form of long strips are designed, fabricated and tested. The results suggest that it is possible to produce the economical and effective fiber-reinforced elastomeric bearing that matches the behavior of a steel-reinforced bearing. Feasibility and advantages of the proposed bearings are illustrated by the application of the analytic procedure to the structure system. Results obtained here are reported to be an efficient approach with respect to bearing system and design of bearing against shock absorbing system when compared with other conventional one.

PARTICLE ACCELERATION IN SUPERNOVA REMNANTS

  • KANG, HYESUNG
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.545-548
    • /
    • 2015
  • Most high energy cosmic rays (CRs) are thought to be produced by diffusive shock acceleration (DSA) in supernova remnants (SNRs) within the Galaxy. Plasma and MHD simulations have shown that the self-excitation of MHD waves and amplification of magnetic fields via plasma instabilities are an integral part of DSA for strong collisionless shocks. In this study we explore how plasma processes such as plasma instabilities and wave-particle interactions can affect the energy spectra of CR protons and electrons, using time-dependent DSA simulations of SNR shocks. We demonstrate that the time-dependent evolution of the shock dynamics, the self-amplified magnetic fields and $Alfv{\acute{e}nic$ drift govern the highest energy end of the CR energy spectra. As a result, the spectral cutoffs in nonthermal X-ray and ${\gamma}$-ray radiation spectra are regulated by the evolution of the highest energy particles, which are injected at the early phase of SNRs. We also find that the maximum energy of CR protons can be boosted significantly only if the scale height of the magnetic field precursor is long enough to contain the diffusion lengths of the particles of interests. Thus, detailed understandings of nonlinear wave-particle interactions and time-dependent DSA simulations are crucial for understanding the nonthermal radiation from CR acceleration sources.