• Title/Summary/Keyword: Shoaling

Search Result 92, Processing Time 0.024 seconds

Bragg Reflection of Long Waves Generated by Short Wave Groups on a Sloping Beach (경사지형에서 파군에 의해 생성된 장파의 Bragg 반사)

  • Jung, Jae-Sang;Cho, Yong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.3 s.134
    • /
    • pp.413-422
    • /
    • 2003
  • Numerical analysis for the Bragg reflection due to sinusoidally varying seabeds tying on a sloping beach was performed by using a couple of ordinary differential equations derived from the Boussinesq equations. Incident waves were wane groups generated by two short waves with slightly different phases. Effects of the slope of a seabed to the reflection were investigated in detail. It is shown that the reflection of long waves enhanced by increasing the slope of a seabed. This phenomenon caused by increase of wave amplitude due to increase of nonlinearity and shoaling.

Study on Effect of Wave Control by Multi-Cylinder Piles Using Delft-3D Hydrodynamic Model (Delft-3D Model을 이용한 다원주 군파일의 파랑제어 효과에 관한 연구)

  • Lee, Snag-Hwa;Jang, Ean-Chul;Lee, Han-Seung;Jeong, Seok-Jae
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.29-35
    • /
    • 2011
  • In order to effectively control waves in a coastal zone, Multi-Cylinder Piles have been suggested as economic structures. A numerical analysis was conducted using the Delft-3D: WAVE module based on SWAN, which considered wave shoaling and refraction. Moreover, irregular waves were used to investigate the hydrodynamic characteristics of the wave interaction with the structure. In this paper, a numerical analysis was carried out to research the effect of wave control through a wave height analysis concerning an existing, concrete wave breaker and multi-cylinder piles placed at the same location. As a result, the effect of the wave control is shown using the wave breaker, multi-cylinder piles, and existing data.

Surf Zone Wave Transformations Simulated by a Fully Nonlinear Boussinesq Equation (완전비선형 Boussinesq방정식을 이용한 쇄파대의 파랑변형 모의)

  • 윤종태;김종무
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.13 no.4
    • /
    • pp.296-308
    • /
    • 2001
  • A fully nonlinear Boussinesq equation of Wei et al. is finite differenced by Adams predictor-corrector method. A spatially distributed source function and sponge layers are used to reduce the reflected waves in the domain and wale breaking mechanism is included in the equation. The generated waves are found to be good and the corresponding wale heights are very close to the target values. The shoaling of solitary wave and transformation of regular wave over submerged shelf were simulated successfully. The characteristics of breaking mechanism was identified through the numerical experiment and the results of two dimensional wave propagation test over the spherical shoal showed the importance of nonlinear wave model.

  • PDF

A Study of Estuarine Flow using the Roving ADCP Data

  • Kang, Ki-Ryong;Iorio, Daniela Di
    • Ocean Science Journal
    • /
    • v.43 no.2
    • /
    • pp.81-90
    • /
    • 2008
  • A study of estuarine flows during a neap tide was performed using 13-hour roving acoustic Doppler current profiles (ADCP) and conductivity-temperature-depth (CTD) profiles in the Altamaha River estuary, Georgia, U.S.A. The least-squared harmonic analysis method was used to fit the tidal ($M_2$) component and separate the flow into two components: the tidal and residual ($M_2$-removed) flows. We applied this method to depth-averaged data. Results show that the $M_2$ component demonstrates over 95% of the variability of observation data. As the flow was dominated by the $M_2$ tidal component in a narrow channel, the tidal ellipse distribution was essentially a back-and-forth motion. The amplitude of $M_2$ velocity component increased slightly from the river mouth (0.45 m/sec) to land (0.6 m/sec) and the phase showed fairly constant values in the center of the channel and rapidly decreasing values near the northern and southern shoaling areas. The residual flow and transport calculated from depth-averaged flow shows temporal variability over the tidal time scale. Strong landward flows appeared during slack waters which may be attributed to increased baroclinic forcing when turbulent mixing decreases.

항만정온도 해석을 위한 수치모형적용과 상호비교분석

  • Lee, Dong-Hyeon;Kim, Gang-Min;Choe, Se-Ho;Lee, Jung-U
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2014.06a
    • /
    • pp.255-257
    • /
    • 2014
  • The harbor tranquility is indicating the level of calmness in the mooring basin of harbor. It relates keenly to berthing/unberthing and cargo handling works but also it is an important indicator to get the minimum water area as the safe refuge. Therefore, it is necessary to analyze in complex the variation of wave height and direction caused by wave refraction, diffraction, shoaling and reflection from the incident waves from outside the harbor. In order to check the calmness inside a harbor, the numerical models are being used currently need fundamental reviews according to the difference of results which depend on their respective features. In this study, hence, it was introduced the validity of numerical models by comparing the computational results for Hupo harbor.

  • PDF

Circulation in the Central South Sea of Korea in Spring 1999

  • Lee, Jae-Chul;Lee, Sang-Ho;Kim, Dae-Hyun;Son, Yong-Tae;Perkins, Henry-T.;Kim, Jeong-Chang;Pang, Ig-Chan
    • Journal of the korean society of oceanography
    • /
    • v.38 no.3
    • /
    • pp.143-155
    • /
    • 2003
  • Current and sea level were observed in spring 1999 by a bottom mounted ADCP and tide gauge in the central part of the South Sea of Korea. With respect to the front, the distribution of isotherms is prograde in the offshore region whereas that of isohalines is retrograde, especially in the coastal area. The combined effect results in shoaling of isopycnals at the front. This distribution corresponds to a westward coastal flow on the northern side of the front and the eastward Tsushima Warm Current (TWC) to the south, determined by vessel-mounted ADCP observations. The low-frequency current shows either alternating clockwise-counterclockwise rotation or else persistent eastward motion depending on the frontal motion. Fluctuations of wind, sea level and current are coherent at period of 3-4 days and show some characteristics of Ekman-like dynamics.

Variation of Wave Set-Up/set-Down due to the Evaluation of Radiation Stress (라디에이션 응력의 평가방법에 따른 평균수위변화)

  • 김경호;차기욱;조재희;윤영호
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.5 no.4
    • /
    • pp.263-270
    • /
    • 1993
  • A study on the variation of radiation stress and mean water level is carried out for the shoaling and breaking waves on a plane beach. In general, the radiation stresses computed based on the linear wave theory are overestimated. which results in the discrepancy between the computed results and laboratory data of mean water level in the surf zone. In this paper, by modifying the Svendsen's approach (1984), radiation stress is expressed in terms of water depth. The computed results are compared with the results calculated by a linear wave theory and Sawaragi's approach (1984) based on the spectrum of breaking wave components, and published laboratory data. The computed results of the modifed Svendsen's approach are favourably compared with the laboratory data.

  • PDF

Heaving displacement amplification characteristics of a power buoy in shoaling water with insufficient draft

  • Kweon, Hyuck-Min;Cho, Il-Hyoung;Cho, Hong-Yeon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.4
    • /
    • pp.614-624
    • /
    • 2013
  • The resonance power buoy is a convincing tool that can increase the extraction efficiency of wave energy. The buoy needs a corresponding draft, to move in resonance with waves within the peak frequency band where wave energy is concentrated. However, it must still be clarified if the buoy acts as an effective displacement amplifier, when there is insufficient water depth. In this study, the vertical displacement of a circular cylinder-type buoy was calculated, with the spectrum data observed in a real shallow sea as the external wave force, and with the corresponding draft, according to the mode frequency of normal waves. Such numerical investigation result, without considering Power Take-Off (PTO) damping, confirmed that the area of the heave responses spectrum can be amplified by up to about tenfold, compared with the wave energy spectrum, if the draft corresponds to the peak frequency, even with insufficient water depth. Moreover, the amplification factor of the buoy varied, according to the seasonal changes in the wave spectra.

A study on the wave control function of ecosystem control structures (생태계제어 구조물의 파랑제어 효과에 관한 연구)

  • 김현주;류청로;손원식
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.149-159
    • /
    • 1996
  • Multipurpose development of the coast and ocean can be considered as multifunction construction combining the functions of coastal protection, waterfront amenity and creation or rehabilitation of habitats. Multfunction development of coastal and ocean spaces can be accomplished by applying the ecosystem control structure of artificial habitats which will cultivate fishing ground with ecological harmony to the coastal protection system. To evaluate the applicability of ecosystem control structures as as fundamental coastal protection structure, wave control function of the structure is studied by numerical and physical analyses. Dimensional analysis and hydraulic experiment point out the importance of width and crest depth of ecosystem control structure, construction water depth and wave steepness. Wave control efficiency is estimated by the attenuation coefficient $(K_H)$ according to wave steepness $(H_0/L_0)$, relative constructed water depth $(h_i/H_0)$, relative berm width $(B/L_0)$ and relative crest depth $(h_B/H_0)$ of eosystem control structure. Empirical fomulas are suggested based on the results of model test by applying the multiple model based on this experimental results and numerical wave shoaling-dissipation-breaking model appears to be valid for the analysis of wave transformation around ecosystem control structure in the coastal waters.

  • PDF

The Prediction of Wave Groups within a Harbor to Assist Ship Operation at the Entrance

  • Cho Ik-Soon
    • Journal of Navigation and Port Research
    • /
    • v.30 no.2
    • /
    • pp.125-130
    • /
    • 2006
  • Waves, which are the main source of ship motions in a seaway, considerably affect the performance of a ship. The study of waves and their impact on ship motions within harbors is an important aspect of the design and operation of harbors. The prediction of incoming groups of waves is particularly important for evaluating ship motion within a harbor. Such a prediction makes it possible to evaluate ship safety more accurately. The wave transformation model reported here is applied to actual ports based on Boussinesq wave equations both non-linear and dispersive wave processes be considered in order to capture physical effects such as wave shoaling, refractions, reflection and diffraction in variable depth environments. The prediction of incoming groups of waves is particularly important for evaluating ship motion within a harbor, Such a prediction makes it possible to evaluate ship safety more accurately and provide safe wave informations for navigation. Furthermore, a wave information support system is proposed for entering ships as one technique for improving the safety of ship operations. This system predicts the run of waves and reduces the danger by identifying the most dangerous point near the harbor entrance at the small wave groups.