• 제목/요약/키워드: Ships and offshore structures

검색결과 146건 처리시간 0.021초

Experimental study of embedding motion and holding power of drag embedment type anchor on hard and soft seafloor

  • Shin, Hyun-Kyoung;Seo, Byoung-Cheon;Lee, Jea-Hoon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제3권3호
    • /
    • pp.193-200
    • /
    • 2011
  • As larger ships and floating offshore structures are, and rougher the marine environment becomes nowadays, a drag embedment type anchor of more stable performance and higher holding power is requested. This paper describes an experimental study of the drag embedding motion and the resultant holding force of three types of drag embedment type anchor model (HALL, AC-14, SEC POOL-N, scale 1/10).

X-Band 레이더를 이용한 해양오염 관측기법에 관한 연구 (A Study of a Method for Detecting Marine Pollution Using X-band Radar)

  • 박승근;양영준;박준수;권순홍
    • 한국해양공학회지
    • /
    • 제24권2호
    • /
    • pp.53-56
    • /
    • 2010
  • Oil spills and red tide can be very damaging to the environment and fishery farming. These catastrophic accidents must be detected as quickly as possible. In this paper, we report the results of applying the wavelet transform to SAR or marine radar images for the detection of the boundaries of an oil spill or red tide. The application of the wavelet transform to these phenomena looks quite promising in detecting the boundaries of oil spills and red tide areas.

랜덤하중에서의 균열전파속도 추정법에 관한 연구 (A Prediction of Crack Propagation Rate under Random Loading)

  • 표동근;안태환
    • 한국해양공학회지
    • /
    • 제8권2호
    • /
    • pp.115-123
    • /
    • 1994
  • Under variable amplitude loading conditions, retardation or accelerated condition of fatigue crack growth occurs with every cycle, Because fatigue crack growth behavior varied depend on load time history. The modeling of stress amplitude with storm loading acted to ships and offshore structures applied this paper. The crack closure behavior examine by recording the variation in load-strain relationship. By taking process mentioned above, fatigue crack growth rate, crack length, stress intensity factor, and crack closure stress intensity factor were obtained from the stress cycles of each type of storm ; A(6m), B(7m), C(8m), D(9m), E(11m) and F(15m) which was wave height. It showed that the good agreement with between the experiment results and simulation of storm loads. So this estimated method of crack propagtion rate gives a good criterion for the safe design of vessels and marine structure.

  • PDF

CAESAR-II를 이용한 파이프 루프의 구조 거동 특성 연구 (Study on Structural Behavior of Pipe Loops Using CAESAR-II)

  • 박치모;윤성룡
    • 한국해양공학회지
    • /
    • 제27권2호
    • /
    • pp.13-18
    • /
    • 2013
  • Most ships and offshore structures are equipped with a variety of pipes, which inevitably contain curved portions. The structural design of these pipes mostly relies on the commercial code, CAESAR-II, which was especially developed for the structural analysis of pipes. This study conducted stress analyses of the same pipe unit, including loops, using both CAESAR-II and MSC/NASTRAN, and compared the results to investigate the characteristics of CAESAR-II. A parametric study was then conducted of the various design variables of pipe loops using CAESAR-II to draw some useful information about the structural characteristics of the loops.

Performance analysis of a horn-type rudder implementing the Coanda effect

  • Seo, Dae-Won;Oh, Jungkeun;Jang, Jinho
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제9권2호
    • /
    • pp.177-184
    • /
    • 2017
  • The Coanda effect is the phenomenon of a fluid jet to stay attached to a curved surface; when a jet stream is applied tangentially to a convex surface, lift force is generated by increase in the circulation. The Coanda effect has great potential to be applied practically applied to marine hydrodynamics where various lifting surfaces are being widely used to control the behavior of ships and offshore structures. In the present study, Numerical simulations and corresponding experiments were performed to ascertain the applicability of the Coanda effect to a horn-type rudder. It was found that the Coanda jet increases the lift coefficient of the rudder by as much as 52% at a jet momentum coefficient of 0.1 and rudder angle of $10^{\circ}$.

Experimental Investigation on the Ultimate and PostUltimate Strength of Stiffened Plates under Axial Compression

  • Cho, Sang-Rai;Song, Ick-Cho
    • Journal of Ship and Ocean Technology
    • /
    • 제7권1호
    • /
    • pp.1-12
    • /
    • 2003
  • Stiffened plates are among the most popular structural elements for marine structures like ships or offshore platforms. Many researchers have performed and reported the results of structural tests on stiffened plates in the open literature. However, the behaviour of stiffened plates in post-ultimate regime has not been fully reported. This paper reports the results of twenty-one axial compression tests including the initial imperfections and material properties of the test models. In aiming to investigate the post-ultimate behaviour of stiffened panels, the axial shortenings were increased up to far beyond the ultimate state. The results obtained from these tests can be utilized in substantiating design formulae in predicting the post-ultimate behaviour of stiffened plates.

Development of a novel fatigue damage model for Gaussian wide band stress responses using numerical approximation methods

  • Jun, Seock-Hee;Park, Jun-Bum
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.755-767
    • /
    • 2020
  • A significant development has been made on a new fatigue damage model applicable to Gaussian wide band stress response spectra using numerical approximation methods such as data processing, time simulation, and regression analysis. So far, most of the alternative approximate models provide slightly underestimated or overestimated damage results compared with the rain-flow counting distribution. A more reliable approximate model that can minimize the damage differences between exact and approximate solutions is required for the practical design of ships and offshore structures. The present paper provides a detailed description of the development process of a new fatigue damage model. Based on the principle of the Gaussian wide band model, this study aims to develop the best approximate fatigue damage model. To obtain highly accurate damage distributions, this study deals with some prominent research findings, i.e., the moment of rain-flow range distribution MRR(n), the special bandwidth parameter μk, the empirical closed form model consisting of four probability density functions, and the correction factor QC. Sequential prerequisite data processes, such as creation of various stress spectra, extraction of stress time history, and the rain-flow counting stress process, are conducted so that these research findings provide much better results. Through comparison studies, the proposed model shows more reliable and accurate damage distributions, very close to those of the rain-flow counting solution. Several significant achievements and findings obtained from this study are suggested. Further work is needed to apply the new developed model to crack growth prediction under a random stress process in view of the engineering critical assessment of offshore structures. The present developed formulation and procedure also need to be extended to non-Gaussian wide band processes.

API 2W Gr. 50 강재 용접부의 피로균열전파거동의 거시적 및 미시적 관찰 (Marco and Microscopic Observations of Fatigue Crack Growth Behavior in API 2W Gr. 50 Steel Joints)

  • 손혜정;김선진
    • 한국해양공학회지
    • /
    • 제26권5호
    • /
    • pp.73-80
    • /
    • 2012
  • It is well known that a considerable amount of scatter is shown in experimental results relating to fatigue crack growth even under identical and constant amplitude cyclic loading conditions. Moreover, flux cored arc welding (FCAW) is a common method used to join thick plates such as the structural members of large scale offshore structures and very large container ships. The objective of this study was to investigate the macro- and microscopic observations of the fatigue crack growth (FCG) behavior of the FCAWed API 2W Gr. 50 steel joints typically applied for offshore structures. In order to clearly understand the randomness of the fatigue crack growth behavior in the materials of three different zones, the weld metal (WM), heat affected zone (HAZ), and base metal (BM), experimental fatigue crack growth tests for each of five specimens were performed on ASTM standard compact tension (CT) specimens under constant amplitude cyclic loading. Special focus was placed on the fatigued fracture surfaces. As a result, a different behavior was observed at the macro-level, depending on the type of material property: BM, HAZ, or WM. The variability in the fatigue crack growth rate for WM was higher than that of BM and HAZ.

Advanced Cathodic Protection Modeling Associated with Coating Degradation Conditions

  • Im, Gwan-Jin;Kim, Ki-Joon;Lee, Myung-Hoon
    • Corrosion Science and Technology
    • /
    • 제8권5호
    • /
    • pp.177-183
    • /
    • 2009
  • There are two effective methods in use to protect ship ballast tank against corrosion. One is paint coating and the other cathodic protection(CP). The conventional cathodic protection design has mainly relied on the expert's experience. During the last two decades computer modeling has been significantly developed as an advanced design technology for cathoidic protection systems not only for ships, but also for offshore structures. However the present computer modeling of cathodic protection systems have some limitations simulating corrosion in the ballast tank with a deteriorated coating. In this study, "coating breakdown factor" considering coating degradation states with time has been attempted to improve the cathodic protection modeling using the data from literatures.

[$CO_2$] 용접이음재의 대기 및 해수중에서의 회전굽힘 피로강도에 관한 연구 (A Study on Rotary Bending Fatigue Strength of the $CO_2$ Gas Welded Joint in Air and Sea Water)

  • 강성원;이승윤
    • 대한조선학회논문집
    • /
    • 제37권2호
    • /
    • pp.118-126
    • /
    • 2000
  • 용접이음재에서는 용착금속, 열영항부 및 모재가 열사이클 및 조직의 변화에 의하여 각종 기계적 성질의 차이가 있으며, 특히 부식환경에서는 이들의 영향이 현저하게 나타나는 경우가 많다. 또 용접이음재의 피로강도는 이음형식, 용접금속 및 열영향부의 특성, 사용환경과 응력의 종류에 따라 변화한다. 따라서 본 연구에서는 현재 선박 및 해양구조물의 건조에 많이 채용되고 있는 TMCP 강재의 $CO_2$ 가스 용접이음재의 열영향부에 대한 대기중 및 부식환경중에서의 회전굽힘피로시험을 실시하여 피로균열의 발생 및 성장거동을 조사 검토하였다. 또한 대기중의 피로강도와 부식환경중의 피로강도를 비교함으로써 부식효과 및 응력집중효과 등을 고려한 용접이음재의 부식환경중에서의 피로강도 평가법 및 피로강도 설계곡선을 검토하였다.

  • PDF