• Title/Summary/Keyword: Shipbuilding, Bellows

Search Result 7, Processing Time 0.029 seconds

A study on the shape optimization of ship's bellows (선박용 벨로우즈의 형상최적화에 관한 연구)

  • Kim J.P.;Kim H.S.;Kim H.J.;Cho W.S.;Jeh S.B.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1303-1306
    • /
    • 2005
  • The mechanical properties of bellows, such as the extensibility and the strength can be changed depending on the shape. For the shipbuilding material, it is favorable that the fatigue life is long due to the elastic property and the reduction of thermal stress in piping system. Nowadays, the domestic production and design of bellows are based on the E.J.M.A Code. Therefore, the design standard is in need because of much errors and lack of detailed analysis. In this study, it is attempted to find out the optimal shape of U-type bellows using the finite element method. The effective factors, mountain height, length, thickness, and number of mountains and the length of joint are considered and the proper values are chosen for the simulation. The results shows that if the number of mountains are reduced, the volume decreases while the stress increases. However, the number of mountains are increased, the volume increases above the standard volume and the stress obviously increases. In addition, the effect of the thickness of bellows on the stress is very large. Both of the volume and stress are decreasing at a certain lower value region.

  • PDF

Study on Structural Performance by Shape Parameter Variation of Bellows for the Hydrogen Compressor-embedded Refueling Tank (수소압축기 내장 충전탱크용 벨로우즈의 형상 파라미터 변화에 따른 구조 성능 고찰)

  • WOO CHANG PARK;MIN SEOK CHEONG;CHANG YONG SONG
    • Journal of Hydrogen and New Energy
    • /
    • v.35 no.1
    • /
    • pp.75-82
    • /
    • 2024
  • In this study, design parameter exploration based on finite element analysis was performed to find the optimal shape of bellows, the key component of compressor-embedded refueling tank for a newly developed hydrogen refueling station capable of high-pressure charging above 900 bar. In the design parametric study, the design variables took into account the bellows shapes such as contour radius and span spacing, and the response factors were set to the maximum stress and the gap in the contact direction. In the shape design of the compressor bellows for hydrogen refueling station considered in this study, it was found that adjusting the contour span is an appropriate design method to improve the compression performance and structural safety. From the selection of optimal design, the maximum stress was reduced to 49% compared to the initial design without exceeding the material yield stress.

A study on the shape optimization of ship's bellows using DOE (실험계획법을 이용한 선박용 벨로우즈의 형상최적화에 관한 연구)

  • Kim J.P.;Kim H.J.;Kim H.S.;Cho U.S.;Jeo S.B.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.637-640
    • /
    • 2005
  • The mechanical properties of bellows, such as the extensibility and the strength can be changed depending on the shape. For the shipbuilding material, it is favorable that the fatigue lift is long due to the elastic property and the reduction of thermal stress in piping system. Nowadays, the domestic production and design of bellows are based on the E.J.M.A Code. Therefore, the design standard is in need because of much errors and lack of detailed analysis. In this study, it is attempted to find out the optimal shape of U-type ship's bellows that is applied to design of experiment using the finite element method. The effective factors, mountain height, length, thickness, and number of mountains and the length of joint are considered and the proper values are chosen for the simulation. The number of mountains are increased, the volume increases above the standard volume and the stress obviously increases. In addition, the effect of the thickness of bellows on the stress is very large. Both of the volume and stress are decreasing at a certain lower value region.

  • PDF

Development of U-shaped Metal Bellows design software based on MATLAB (매트랩을 기반으로 한 U자형 금속 벨로우즈 설계소프트웨어 개발)

  • Jang, BongChoon;Kim, Sung-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2379-2384
    • /
    • 2015
  • Bellows product is an important part in the area of plant engineering, shipbuilding and petrochemistry. For safety and durability it is necessary to consider lots of factors when designing it. This research developed a U-shaped metal bellows design software based on EJMA 9th Edition manual. This GUI software was developed by using Matlab software and can be able to design four types of bellows, Unreinforced Single Bellows, Unreinforced Double Bellows, Reinforced Single Bellows and Reinforced Double Bellows. The already proven bellows model was designed to verify this software. We investigated the behavior while changing the thickness of the bellows. As the thickness of bellows increases, spring rate, thrust force, stress increase and fatigue life decreases. This software will be helpful design engineers save time and effort.

CFD/CAE Analysis of QC/DC Bellows for LNG Bunkering (LNG 벙커링용 QC/DC 밸로즈의 유동/구조 해석)

  • Jang, Sung-Cheol;Eom, Jeong-Pil;Jung, Hyun-Cheol
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.5
    • /
    • pp.191-195
    • /
    • 2018
  • By using an ANSYS product suite (CFX, Ansys Multiphysics), which is a powerful tool for multiphysics analysis of complicated physical phenomena, we performed a structural stress analysis based on fluid flow and heat transfer phenomena within a quick connect/disconnect (QC/DC) bellows system. Considering the extremely low temperatures in the QC/DC environment, an approach to the problem based on complex multi-physics phenomena, where different phenomena interact with each other, is crucial. Therefore, we use a numerical analysis technique where fluid-thermal-structural interactions are combined. In conclusion, when low temperature fluids flow inside bellows, the expected service life is conspicuously reduced due to the thermal stress caused by heat transfer. Therefore, in future research, a structure with considerably reduced thermal stress by robust design optimization will be derived.

Shape Optimization for Performance Improvement of Ship's U-type Bellows (선박용 U형 벨로우즈의 성능 향상을 위한 형상 최적화)

  • Kim, Hyoung-Jun;Kim, Hyun-Su;Kim, Jong-Pil;Park, Jun-Hong;Kim, Myoung-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.6 s.73
    • /
    • pp.123-129
    • /
    • 2006
  • The mechanical properties of bellows, such as the extensibility and the strength can be changed depending on the shape. For the shipbuilding material, it is desirable that the fatigue life is long due to the elastic property and the reduction of thermal stress in piping system. Nowadays, the domestic production and design of bellows are based on the E.J.M.A. Code. Therefore, the design standard is in need because of much errors and lack of detailed analysis. In this study, it is attempted to find out the optimal shape of U-type bellows using the finite element analysis. The design factors, mountain height, length, thickness, and the number of convolutions are considered and the proper values are chosen for the simulation. The results shaw that as the number of convolutions reduces, the volume decreases while the stress increases. However, as the number of convolutions increases, the volume increases above the standard volume and the stress obviously increases. In addition, the effect of the thickness of bellows on the stress is very large. Both of the mass and stress are decreasing at a certain lower value region. Also, we investigated shape optimization with considering maximum stress distribution tendency.

Design and Basic Performance Test of 4 Inch QC/DC Bellows for LNG Bunkering (LNG 벙커링용 4인치 QC/DC의 설계 및 기초 성능 실험)

  • Jang, Sung-Cheol;Seo, Chang-Myung;Kwen, Min-Soo;Eom, Jeong-Pil;Jung, Hyun-Cheol
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.2
    • /
    • pp.81-86
    • /
    • 2019
  • Although the localization rate of shipbuilding and marine equipment goods is set to be 70 percent by 2020, but the localization rate of equipment and materials for shipbuilding and marine facilities is currently 10 to 30 percent. For Korea's Big 3 shipbuilders, which build 70 percent of the world's largest shipbuilders, localization of shipbuilding equipment and equipment is an essential factor. In particular, there is a growing need to localize equipment and materials in terms of the number of lead standards and A/S. It is expected that there will be a rapid expansion of LNG carriers in the future, and it is necessary to develop equipment and equipment materials of LNG ships. In this study, the design and manufacture of LNG vessel equipment was conducted. Design and basic performance tests of 4-inch QCDC for LNG bunkering were conducted.