• Title/Summary/Keyword: Shipboard

Search Result 317, Processing Time 0.023 seconds

Shipboard Training for the Efficient Maritime Education

  • Nam, Chung-Do
    • Journal of Navigation and Port Research
    • /
    • v.30 no.9
    • /
    • pp.735-740
    • /
    • 2006
  • Marine officers should have crisis control ability because ship operation needs not only highly specialized information, but also functional capability due to the fact that there always exist dangers at sea, which are different from those at shore. Therefore, marine officers should be trained on the related specialized information under the systematical educational system including shipboard training. Their training is also based on the strong spiritual power and physical strength through the strict training process. In order to have these vocational personalities, dormitory life training and shipboard training courses seem to be essential processes, which are required of maritime education. The introduction of automatic system into the ship as a result of the recent development of technology brings decrease of the full number of crew. Consequently, marine officers are increasingly under heavy burden, and should have more ship operation capabilities than before. Maine officers should have not only specialized information which differs from that at shore, but also vocational adaptability which can reasonably tackle with all the problems which exist on the spot and are obstacles to individual, spiritual, physical, natural, and social demands. So it is required that marine officers should have study many areas to deal with as extra curricula besides their major field of study, which are unique characteristics of the education for them. These vocational adaptabilities are based on the spiritual characteristics, such as self-developmental education, responsibility, meticulous care, attentiveness, voluntary, planning, readiness, spontaneity, accuracy, self-denial, obedience, leadership, and etc.

Controller Optimization for Bidirectional Power Flow in Medium-Voltage DC Power Systems

  • Chung, Il-Yop;Liu, Wenxin;Cartes, David A.;Cho, Soo-Hwan;Kang, Hyun-Koo
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.6
    • /
    • pp.750-759
    • /
    • 2011
  • This paper focuses on the control of bidirectional power flow in the electric shipboard power systems, especially in the Medium-Voltage Direct Current (MVDC) shipboard power system. Bidirectional power control between the main MVDC bus and the local zones can improve the energy efficiency and control flexibility of electric ship systems. However, since the MVDC system contains various nonlinear loads such as pulsed power load and radar in various subsystems, the voltage of the MVDC and the local zones varies significantly. This voltage variation affects the control performance of the bidirectional DC-DC converters as exogenous disturbances. To improve the control performance regardless of uncertainties and disturbances, this paper proposes a novel controller design method of the bidirectional DC-DC converters using $L_1$ control theory and intelligent optimization algorithm. The performance of the proposed method is verified via large-scale real-time digital simulation of a notional shipboard MVDC power system.

Effects of Mount Eccentricity and External Force Eccentricity on the Vibration Characteristics of Naval Shipboard Equipments Supported by Elastic Mounts (마운트편심과 기진력편심이 함정탑재장비의 진동특성에 미치는 영향)

  • Lee, Hyun Yup;Lee, Chung Hyun;Ruy, Wonsun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.6
    • /
    • pp.447-452
    • /
    • 2017
  • A rigid body supported by 4 linear springs has been analyzed, to investigate the effects of eccentricities on the vibration responses for naval shipboard equipments supported by elastic mounts. Considering mount eccentricity (the location of the center of spring reaction forces relative to the mass center) and excitation force eccentricity (the location of the center of the excitation force relative to the mass center), the vibration phenomena have been formulated and discussed. Also, the effects of the eccentricities have been evaluated and discussed for the elastically mounted naval shipboard equipment. Results show that the mount eccentricity has little effects on the structure-borne noise above the natural frequency of the system, however the excitation force eccentricity has significant effects all over the frequency range.

Fabrication and Characteristics of a Combination Surge Generator for Testing Shipboard Electrical Systems (선박전기설비 시험용 조합형 써 - 지발생장치의 제작과 특성)

  • 길경석;김윤식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.387-392
    • /
    • 1997
  • This paper describes a combination surge generator for carrying out performance tests on the surge protection circuits of shipboard electrical systems. Pspice simulations were performed to decide the values of the parts required and to analyze the characteristics of the generator circuitry. The surge generator fabricated can produce four of the most common surge test waveforms : the O.5i/S/100kHz Ringwave, the 1.2/50$\mu$S voltage, the 8/20$\mu$S current, and the lO/lOOOi/S voltage wave¬forms specified in ANSI Std. C62. Source impedances of the surge generator are 12$\Omega$ in the O.5$\mu$S/100kHz mode, O.5$\Omega$ in the 1.2/50$\mu$S and 8/20$\mu$S mode, and 40$\Omega$in the l0/1000$\mu$S mode, and are determined by the ratio of the maxi¬mum open - circuit voltage to the maximum short - circuit current. Experimental results show that the surge generator provides most of the outputs required for the testing of the surge protection circuits on shipboard electrical systems.

  • PDF

Heave Motion Estimation of a Ship Deck for Shipboard Landing of a VTOL UAV (수직이착륙 무인기 함상 착륙점의 상하 운동 추정)

  • Cho, Am;Yoo, Changsun;Kang, Youngshin;Park, Bumjin
    • Journal of Aerospace System Engineering
    • /
    • v.8 no.3
    • /
    • pp.14-19
    • /
    • 2014
  • When a helicopter lands on a ship deck in high sea states, one of main difficulties is the ship motion by sea wave, In case of a manned helicopter, a pilot lands a helicopter on the deck during quiescent period of ship motion, which is perceived from different visual cues around landing spot. The capability to predict this quiescent period is very important especially for shipboard recovery of VTOL UAV in harsh environments. This paper describes how to predict heave motion of a ship for shipboard landing of a VTOL UAV. For simulation, ship motion by sea wave was generated using a 4,000 ton class US destroyer model. Heave motion of ship deck was predicted by applying auto-regression method to generated time series data of ship motion.

Shipboard sewage treatment using Sequence Batch Reactor (SBR을 이용한 선박오수 고도처리장치 개발)

  • Kim, In-Soo;Oh, Yeom-Jae;Lee, Eon-Sung
    • Journal of Navigation and Port Research
    • /
    • v.34 no.5
    • /
    • pp.375-381
    • /
    • 2010
  • This study was carried out for advanced treatment development on shipboard sewage. We employed SBR process using Bacillus sp. to remove Organic compounds, Nitrogen and Phosphorus simultaneously. Based on Res. MEPC.159(55) the system was qualified. From the results it was suggested that SBR system might be suitable process for shipboard sewage treatment in terms of pollutant removal efficiency, maintenance and special environmental conditions of ship. More than 90% of COD and BOD were removed. In addition, aover 50% of T-N and T-P were reduced.

A Study on the Implementation Method of Artificial Intelligence Shipboard Combat System (인공지능 함정전투체계 구현 방안에 관한 연구)

  • Kwon, Pan Gum;Jang, Kyoung Sun;Kim, Seung Woo;Kim, Jun Young;Yun, Won Hyuk;Rhee, Kye Jin
    • Convergence Security Journal
    • /
    • v.20 no.2
    • /
    • pp.123-135
    • /
    • 2020
  • Since AlphaGo's Match in 2016, there has been a growing calls for artificial intelligence applications in various industries, and research related to it has been actively conducted. The same is true in the military field, and since there has been no weapon system with artificial intelligence so far, effort to implement it are posing a challenge. Meanwhile, AlphaGo Zero, which beat AlphaGo, showed that artificial intelligence's self-training data-based approach can lead to better results than the knowledge-based approach by humans. Taking this point into consideration, this paper proposes to apply Reinforcement Learning, which is the basis of AlphaGo Zero, to the Shipboard Combat System or Combat Management System. This is how an artificial intelligence application to the Shipboard Combat System or Combat Management System that allows the optimal tactical assist with a constant win rate to be recommended to the user, that is, the commanding officer and operation personnel. To this end, the definition of the combat performance of the system, the design plan for the Shipboard Combat System, the mapping with the real system, and the training system are presented to smoothly apply the current operations.

Evaluation of Vibration Fatigue Life of Shipboard Equipment Made of Aluminum Alloy A356 (주조 알루미늄합금 A356을 사용한 해상구조물의 진동피로수명평가)

  • Cho, Ki-Dae;Kim, Jie-Eok;Yang, Sung-Chul;Jung, Hwa-Young;Kang, Ki-Weon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1257-1263
    • /
    • 2010
  • The naval structure exposes to environmental vibration of shafted propeller propulsion and engine vibration. The shipboard equipments are developed compliance to MIL-STD-167-1A. For this purpose, vibration fatigue life of shipboard equipment for long lives should be estimate via an analytical approach and vibration test. In this paper, High cycle fatigue strength of cast aluminum alloy A356 using shipboard equipment was evaluated by 14 S-N method. The stress applied on the structure is evaluated by an analytical method(frequency response analysis with sinusoidal input and a fatigue evaluation) to simulate a MIL-STD-167-1A test. The frequency with the maximum equivalent stress is shown by Max. test frequency and the vibration fatigue life of shipboard equipment was estimated by Miner's rule.

Sea Wave Modeling Analysis and Simulation for Shipboard Landing of Tilt Rotor Unmanned Aerial Vehicle (틸트로터 무인기 함상이착륙 위한 파고운동 해석 및 시뮬레이션)

  • Yoo, Chang-Sun;Cho, Am;Park, Bum-Jin;Kang, Young-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.9
    • /
    • pp.731-738
    • /
    • 2014
  • The mission of UAV has been expanded from a land to an ocean based on an enhancement of its technologies. Korea Aerospace Research Institute (KARI) also tries to expand the mission of tilt rotor UAV to an ocean, in which the shipboard landing of UAV is required. However the environment of an oceanic operation is severer than that of land due to salty, fogy, and windy condition. The landing point for automatic landing is not fixed due to movement of shipboard in roll, pitch, and heave. It makes the oceanic operation and landing of UAV difficult. In order to conduct an oceanic operation of tilt rotor UAV, this paper presents that the sea wave modeling according to the sea state is conducted and the shipboard landing of tilt rotor UAV under the sea wave is tested and evaluated through the flight simulator for UAV.

Installation and Shipboard Tests of the Ballast Water Treatment System Electro-Cleen (Electro-Cleen 선박평형수 처리장치의 실선 설치 및 선상시험)

  • Kim, Eun-Chan;Cho, Jin-Suk;Park, Yong-Seok;Lee, Jong-Wook
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.3
    • /
    • pp.209-216
    • /
    • 2009
  • IMO has established International Convention for the Control and Management of Ships' Ballast Water and Sediment 2004 in February 2004 in order to prevent transfer of aquatic organisms through ballast water. According to the Convention, Each countries are preparing ratification and legislation process and encouraging the development of treatment system to satisfy the performance standard in the Convention. This Electro-$Cleen^{TM}$ treatment system was granted IMO basic approval in March 2006, and final approval in October 2008. The Type Approval Certificate was issued in December 2008 by the Government of Republic of Korea. This paper considers the matter of principle mechanism, overview of the system, installation on shipboard and shipboard test results for the Electro-$Cleen^{TM}$. Shipboard tests with the 8300 GT M/V Yokohama and 27,000 DWT M/V Greenwing have already been conducted. These tests confirmed that the Electro-$Cleen^{TM}$ system satisfies all of the IMO standards and is suitable for installation in new and existing ships.

  • PDF