DOI QR코드

DOI QR Code

Sea Wave Modeling Analysis and Simulation for Shipboard Landing of Tilt Rotor Unmanned Aerial Vehicle

틸트로터 무인기 함상이착륙 위한 파고운동 해석 및 시뮬레이션

  • Yoo, Chang-Sun (Future Aircraft Systems Division, Korea Aerospace Research Institute) ;
  • Cho, Am (Future Aircraft Systems Division, Korea Aerospace Research Institute) ;
  • Park, Bum-Jin (Future Aircraft Systems Division, Korea Aerospace Research Institute) ;
  • Kang, Young-Shin (Future Aircraft Systems Division, Korea Aerospace Research Institute)
  • Received : 2014.03.25
  • Accepted : 2014.08.19
  • Published : 2014.09.01

Abstract

The mission of UAV has been expanded from a land to an ocean based on an enhancement of its technologies. Korea Aerospace Research Institute (KARI) also tries to expand the mission of tilt rotor UAV to an ocean, in which the shipboard landing of UAV is required. However the environment of an oceanic operation is severer than that of land due to salty, fogy, and windy condition. The landing point for automatic landing is not fixed due to movement of shipboard in roll, pitch, and heave. It makes the oceanic operation and landing of UAV difficult. In order to conduct an oceanic operation of tilt rotor UAV, this paper presents that the sea wave modeling according to the sea state is conducted and the shipboard landing of tilt rotor UAV under the sea wave is tested and evaluated through the flight simulator for UAV.

오늘날 무인기는 기술 발전을 통해 육해상의 다양한 분야에서 이용되고 있다. 한국항공우주연구원(KARI)에서는 육상용 수직이착륙기로 개발된 틸트로터 무인기를 해상에서 운용할 수 있도록 임무영역 확장을 고려하고 있다. 틸트로터 무인기의 효과적인 해상운용을 위해서는 함상이착륙이 필요하지만 해상은 지상에 비해 염분, 연무, 바람등 기상영향을 많이 받는다. 또한 지상과는 달리 선박 운동으로 인한 착륙지점의 운동이 발생하며, 자동 함상착륙을 어렵게 만든다. 이러한 무인기 함상이착륙을 위하여 본 논문에서는 파고에 따른 선박 운동을 모델링 하고, 무인기 시뮬레이터를 통해 시험평가한 결과를 제시하고 있다.

Keywords

References

  1. W. P. Geyer, Jr., K. Long, D. Carico, American Clearance Process, Naval Air Systems Command, USA
  2. R. Fang, H. W. Krijns, R. S. Finch, Dutch/British Clearance Process, National Aerospace Laboratory NLR and Royal Netherlands Navy, Netherlands, Boscombe Down, England
  3. U.S Army, Joint Shipboard Helicopter and Tiltrotor Aircraft Operations, Joint Publications 3-04, Dec, 06, 2012
  4. Fire Scout Newsletter, "U.S. Navy MQ-8B Fire Scout Completes Test Period Onboard USS MClnerney, June 2009.
  5. UAV Briefing, The Rising of the Remote VTOL UAVs, June 2008. pp 14-20.
  6. M. Hardesty, S. Kennedy, S. Dixon, T. Berka, J. Graham, D. Caldwell, "Development of Navigation and Automated Flight Control System Solutions for Maritime VTOL UAS Operations," USNA12, pp. 1-20
  7. H. M. Shin, H. C. Shim, "Autonomous Shipboard Landing Guidance Law of Unmanned Helicopter in Cross Wind Situation," Proc. of the Korea Society of Aeronautical and Space, Nov., 2012, pp. 459-462
  8. H. M. Shin, D. I. Yoo, H. C. Shim, "An Automatic Ship Landing Algorithm of Vertical-Take-off and Landing Unmanned", Proc. of the Korea Society of Aeronautical and Space, Apr. 2012, pp. 702-708
  9. Y. S. Kang, B. J. Park, A. Cho, C. S. Yoo, S. O, Koo, "Flight Test Results of Automatic Take Off and Landing for the Full Scale Smart UAV", Proc. of the Korea Society of Aeronautical and Space, Apr. 13-15, 2011, pp. 426-429
  10. C. S. Yoo, Y. S. Kang, B. J. Park, A. Cho, "Research on Shipboard Landing of Tilt Rotor Unmanned Aerial Vehicle," Proc. of the International Conference on Control, Automation and Systems, Oct. 2012
  11. C. S. Yoo, A. Cho, B. J. Park, Y. S. Kang, "Sea Wave Modeling and Shipboard Landing Simulation of Tilt Rotor Unmanned Aerial Vehicle," Proc. of the Asia-Pacific International Symposium on Aerospace Technology, Nov. 2013
  12. S. J. Hodge, S. J. Zan, D. M. Roper, G. D. Padfield, I. Owen, "Time-Accurate Ship Airwake and Unsteady Aerodynamic Loads Modeling for Maritime Helicopter Simulation," J. of the AHS, Jan. 2009. pp. 022005-1-16
  13. S. J. Hodge, J. S. Forrest, G. D. Padfield, I. Owen, "Simulating the environment at the helicopter-ship dynamic interface : research, development and application," The Aeronautical Jounal, Vl 116, No. 1185, Nov. 2012, pp.1155-1184 https://doi.org/10.1017/S0001924000007545
  14. SNAME (1950). "Nomenclature for Treating the Motion of a Submerged Body through a Fluid", Technical Report Bulletin 1-5. Society of Naval Architects and Marine Engineers, New York, USA. 1950.
  15. T. Peres, M. Blanke, "Simulation of Ship Motion in Seaway," Technical Report EE02037, Department of Electrical and Computer Engineering. pp.1-13
  16. P. Zwolan, K. Czaplewski, "Sea waves models used in maritime simulators," Scieintific Journals, 2012, 32(104) z.2 pp.186-190
  17. T. R. Applebee, et al, "Response Amplitude Operator Prediction for the USS Belknap (DLG-26) and USS Joseph Hewes (DE 1052) Class Destroyers," Naval Ship Research and Development Center, Bethesda, Maryland, Nov. 1974

Cited by

  1. A Precision Landing Test on Motion Platform and Shipboard of a Tilt-Rotor UAV Based on RTK-GNSS pp.2093-2480, 2018, https://doi.org/10.1007/s42405-018-0081-8