DOI QR코드

DOI QR Code

Experimental Study of the Quantitative Characteristics of Fluidic Thrust Vectoring Nozzle for UAV

UAV용 추력편향 노즐의 정량적 특성에 관한 실험적 연구

  • Park, Sang-Hoon (Department of Aerospace & Mechanical Engineering, Graduate School, Korea Aerospace University) ;
  • Lee, Yeol (School of Aerospace & Mechanical Engineering, Korea Aerospace University)
  • Received : 2014.03.21
  • Accepted : 2014.07.27
  • Published : 2014.09.01

Abstract

Experimental study for supersonic co-flowing fluidic thrust vectoring control utilizing the secondary flow is performed. The characteristics of the thrust vectoring of two dimensional supersonic flow (Mach 2.0) are studied by Schlieren flow visualization and highly-accurate multi-component force measurements using the load cells. It is observed that the thrust deflection angle initially decreases and increases again forming a V-shaped variation as the pressure of the secondary flow increases. Characteristics of the performance coefficients of the system are also studied, and the detailed operating conditions for higher performance of the technique are suggested.

이차유동을 이용한 초음속 동축류 추력편향 제어기법에 대한 실험적 연구가 진행되었다. 쉴리렌 유동가시화 및 로드셀을 이용한 고정확도의 다분력 시험장치를 통하여 이차원 초음속(마하수 2.0) 유동의 추력편향 특성이 관찰되었다. 추력편향각은 부유동의 압력이 점차 커지면서 일시 감소 후 다시 증가하는 V-자형 추세를 보이고 있음이 관찰되었다. 추력편향 유동의 성능을 나타내는 성능계수들의 분석이 이루어졌으며, 보다 높은 성능지표를 나타내는 본 시스템의 운용조건이 제시되었다.

Keywords

References

  1. Deer, K. A., "Summary of Fluidic Thrust Vectoring Research Conducted at NASA Langley Research Center," AIAA 2003-3800, 2003.
  2. Bevilaqua, P. M., Lee, John. D., "Design of Supersonic Coanda Jet Nozzles," AIAA 84-0333, 1984.
  3. Mason, M. S., Crowther, W. J., "Fluidic Thrust Vectoring for Low Observable Air Vehicles," AIAA Paper 2004-2210, 2004.
  4. Saghafi, F., Banazadeh. A., "Co-flow Fluidic Thrust Vectoring Requirements for Longitudinal and Lateral Trim Purposes," AIAA 2006-4980, 2006
  5. Strykowski, P. J., Krothapalli, A., and Forliti, D. J., "Counterflow Thrust Vectoring of Supersonic Jets," AIAA Journal, Vol. 34, No. 11, pp. 2306-2314, 1996. https://doi.org/10.2514/3.13395
  6. Alvi, F. S., Strykowski, P. J., "Forward Flight Effects on Counterflow Thrust Vector Control of a Supersonic Jet," AIAA Journal, Vol. 37, No. 2, pp. 279-281, 1999 https://doi.org/10.2514/2.705
  7. Yoon, S. H., Jun, D. H., et al., "Experimental Study of Thrust Vectoring of Supersonic Jet Utilizing Co-flowing Coanda Effects," J. KSAS, Vol. 40, No. 11, pp. 927-933, 2012. https://doi.org/10.5139/JKSAS.2012.40.11.927
  8. Song, M. J., Chang, H. B., et al., "Development of the High-Accuracy Multi-Component Balance for Fluidic Thrust Vectoring Nozzle of UAV," J. KSAS, Vol. 41, No. 2, pp. 142-149, 2013. https://doi.org/10.5139/JKSAS.2013.41.2.142
  9. Flamm, J. D., Deere, K. A., et al, "Design Enhancements of the Two Dimensional, Dual Throat Fluidic Thrust vectoring Nozzle Concept," AIAA 2006-3701, 2006.
  10. private communication with CAS Inc.
  11. Gregory-Smith, D. G., Senior, P., "The Effects of Base Steps and Axisymmetry on Supersonic Jets over Coanda Surfaces," Int. J. Heat and Fluid Flow, Vol. 15, No. 4, pp. 291-298, 1994. https://doi.org/10.1016/0142-727X(94)90014-0
  12. Carpenter, P. W., Smith, C., "The Aeroacoustics and Aerodynamics of High-Speed Coanda Devices, Part 2: Effects of Modifications for Flow Control and Noise Reduction," Journal of Sound and Vibration, Vol. 208, No. 5, pp. 803-822, 1997. https://doi.org/10.1006/jsvi.1997.1203
  13. Berton, J. J., "Divergence Thrust Loss Calculations for Convergent-Divergent Nozzles: Extensions to the Classical case," NASA Technical Memorandum 105176, 1991.