• Title/Summary/Keyword: Ship yard layout

Search Result 8, Processing Time 0.017 seconds

A Shipyard Layout Design System by Simulation (시뮬레이션 기반 조선소 레이아웃 설계 시스템 개발)

  • Song, Young-Joo;Lee, Dong-Kun;Woo, Jong-Hun;Shin, Jong-Gye
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.4
    • /
    • pp.441-454
    • /
    • 2008
  • Shipyard design and equipments layout problem, which are directly linked with the productivity of ship production, is an important issue serving as reference data of production plan for later massive production of ships. So far in many cases, design of a shipyard has been relying on the experienced engineers in shipbuilding, resulting in sporadic and poorly organized processes. And thus, economic losses as well as trials and errors in that accord have been pointed out as inevitable problems. This paper extracts a checklist of major elements to fine tune the shipbuilding yard designing process and the input/output data based on the simulation based shipbuilding yard layout designing framework and methodology proposed in existing researches, and executed initial architecture to develop software that integrates all the relevant processes and designing tools. In this course, both user request and design data by the steps are arranged and organized in the proposed layout design template form. In addition, simulation is done based on the parent shipbuilding process planning and scheduling data of the ship product, shipbuilding process and work stage facilities that constitute shipbuilding yard, and design items are verified and optimized with the layout and equipment list showing optimal process planning and scheduling effects. All the contents of this paper are based on simulation based shipbuilding yard layout designing methodology, and initial architecture processes are based on object oriented development methodology and system engineering methods.

Technological and economic study of ship recycling in Egypt

  • Welaya, Yousri M.A.;Abdel Naby, Maged M.;Tadros, Mina Y.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.4
    • /
    • pp.362-373
    • /
    • 2012
  • The ship recycling industry is growing rapidly. It is estimated that the International Maritime Organization's (IMO) decision to phase-out single hull tankers by 2015 will result in hundreds of ships requiring disposal. At present, the ship recycling industry is predominantly based in South Asia. Due to the bad practice of current scrapping procedure, the paper will highlight the harm occurring to health, safety and environment. The efforts of the Marine Environment Protection Committee (MEPC) which led to the signing of the Hong Kong International Convention are also reviewed. The criteria and standards required to reduce the risk and damage to the environment are discussed and a proposed plan for the safe scrapping of ships is then presented. A technological and economic study for the ship recycling in Egypt is carried out as a case study. This includes the ship recycling facility size and layout. The equipment and staff required to operate the facility are also evaluated. A cost analysis is then carried out. This includes site development, human resources, machineries and equipment. A fuzzy logic approach is used to assess the benefits of the ship breaking yard. The use of the fuzzy logic approach is found suitable to make decisions for the ship breaking industry. Based on given constraints, the proposed model has proved capable of assessing the profit and the internal rate of return.

Block layout method in the block stockyard based on the genetic algorithm

  • Roh, Myung-Il
    • Ocean Systems Engineering
    • /
    • v.2 no.4
    • /
    • pp.271-287
    • /
    • 2012
  • Due to its large size, a ship is first divided into scores of blocks and then each block is constructed through various shops, such as the assembly shop, the painting shop, and the outfitting shop. However, each block may not be directly moved to the next shop and may be temporarily laid at a block stockyard because the working time in each shop is different from each other. If blocks are laid at the block stockyard without any planning, the rearrangement of the blocks by a transporter is required because the blocks have the different in and out time. In this study, a block layout method based on the genetic algorithm was proposed in order to minimize the rearrangement of the blocks in the block stockyard. To evaluate the applicability of the proposed method, it was applied to simple layout problems of the block stockyard. The result shows that the proposed method can yield a block layout that minimizes the total relocation cost of moving obstacle blocks in the block stockyard.

Minimization of the Rearrangement of a Block Stockyard Based on the Genetic Algorithm (유전 알고리즘을 기반으로 한 조선소 블록 적치장의 재배치 최소화)

  • Roh, Myung-Il;Im, Byeong-Seog
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.3
    • /
    • pp.207-215
    • /
    • 2011
  • Due to its large size, a ship is first divided into scores of blocks and then each block is constructed through various shops, such as the assembly shop, the painting shop, and the outfitting shop. However, each block may not be directly moved to the next shop and may be temporarily laid on a block stockyard because the working time in each shop is different. If blocks are laid on the block stockyard without any planning, the rearrangement of the blocks by a transporter are required because the blocks have the different in and out time. In this study, an optimal layout method based on the genetic algorithm was proposed in order to minimize the rearrangement of the blocks in the block stockyard. To evaluate the applicability of the proposed method, it was applied to a simple layout problem of the block stockyard.

New business opportunity: Green field project with new technology

  • Lee, Seung Jae;Woo, Jong Hun;Shin, Jong Gye
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.471-483
    • /
    • 2014
  • Since 2009 of global financial crisis, shipbuilding industry has undergone hard times seriously. After such a long depression, the latest global shipping market index shows that the economic recovery of global shipbuilding market is underway. Especially, nations with enormous resources are going to increase their productivity or expanding their shipyards to accommodate a large amount of orders expected in the near future. However, few commercial projects have been carried out for the practical shipyard layout designs even though those can be good commercial opportunities for shipbuilding engineers. Shipbuilding starts with a shipyard construction with a large scale investment initially. Shipyard design and the equipment layout problem, which is directly linked to the productivity of ship production, is an important issue in the production planning of mass production of ships. In many cases, shipbuilding yard design has relied on the experience of the internal engineer, resulting in sporadic and poorly organized processes. Consequently, economic losses and the trial and error involved in such a design process are inevitable problems. The starting point of shipyard construction is to design a shipyard layout. Four kinds of engineering parts required for the shipyard layout design and construction. Those are civil engineering, building engineering, utility engineering and production layout engineering. Among these parts, production layout engineering is most important because its result is used as a foundation of the other engineering parts, and also, determines the shipyard capacity in the shipyard lifecycle. In this paper, the background of shipbuilding industry is explained in terms of engineering works for the recognition of the macro trend. Nextly, preliminary design methods and related case study is introduced briefly by referencing the previous research. Lastly, the designed work of layout design is validated using the computer simulation technology.

Simulation-based Evaluation of AGV Operation at Automated Container Terminal (시뮬레이션을 이용한 자동화 컨테이너 터미널의 AGV 운영평가)

  • Ha Tae-Young;Choi Yong-Seok;Kim Woo-Sun
    • Journal of Navigation and Port Research
    • /
    • v.28 no.10 s.96
    • /
    • pp.891-897
    • /
    • 2004
  • This paper provided a simulation model for transport vehicles that carry container from the ship to yard block and vice versa at automated container terminal with a perpendicular yard layout. Usually, the efficiency of container terminal is evaluated by the productivity of container cranes at apron, and the stevedoring system for transport vehicles and yard cranes should be supported enough to improve productivity of container cranes. Especially, transport vehicle is very important factor in the productivity of container cranes and the performance of transport vehicles are changed according to the number and traveling type of vehicles. For these reason, a method that can estimate productivity of transport vehicle is required Finally, we developed the simulation model to analyze the productivity of transport vehicle and presented the productivity of container cranes for a varying operation of transport vehicles.

Spatial Scheduling in Shipbuilding Industry

  • Duck Young Yoon;Varghese Ranjan;Koo Chung Kon
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.106-110
    • /
    • 2004
  • In any large heavy industry like that of ship building, there exist a lot of complications for the arrangement of building blocks optimally for the minimal space consumption. The major problem arises at yard because of laxity in space for arranging the building blocks of ship under construction. A standardized erection sequence diagram is generally available to provide the prioritised erection sequence. This erection sequence diagram serves as the frame work. In order to make a timely erection of the blocks a post plan has to be developed so that the blocks lie in the nearest possible vicinity of the material handling devices while keeping the priority of erection. Therefore, the blocks are arranged in the pre-erection area. This kind of readiness of blocks leads to a very complex problem of space. This arises due to the least available space leading to an urgent need of an availability of intelligent spatial schedule without compromising the rate of production. There exists two critical problems ahead namely, the spatial occupation layout of pre-erection area and the emptying pattern in the spatial vicinity. The block shape is assumed be rectangular. The related input data's are the dates of erection (earliest as well as the latest), geometrical parameters of block available on pre-erection area, slack time and the like.

  • PDF