• 제목/요약/키워드: Ship yard layout

검색결과 8건 처리시간 0.02초

시뮬레이션 기반 조선소 레이아웃 설계 시스템 개발 (A Shipyard Layout Design System by Simulation)

  • 송영주;이동건;우종훈;신종계
    • 대한조선학회논문집
    • /
    • 제45권4호
    • /
    • pp.441-454
    • /
    • 2008
  • Shipyard design and equipments layout problem, which are directly linked with the productivity of ship production, is an important issue serving as reference data of production plan for later massive production of ships. So far in many cases, design of a shipyard has been relying on the experienced engineers in shipbuilding, resulting in sporadic and poorly organized processes. And thus, economic losses as well as trials and errors in that accord have been pointed out as inevitable problems. This paper extracts a checklist of major elements to fine tune the shipbuilding yard designing process and the input/output data based on the simulation based shipbuilding yard layout designing framework and methodology proposed in existing researches, and executed initial architecture to develop software that integrates all the relevant processes and designing tools. In this course, both user request and design data by the steps are arranged and organized in the proposed layout design template form. In addition, simulation is done based on the parent shipbuilding process planning and scheduling data of the ship product, shipbuilding process and work stage facilities that constitute shipbuilding yard, and design items are verified and optimized with the layout and equipment list showing optimal process planning and scheduling effects. All the contents of this paper are based on simulation based shipbuilding yard layout designing methodology, and initial architecture processes are based on object oriented development methodology and system engineering methods.

Technological and economic study of ship recycling in Egypt

  • Welaya, Yousri M.A.;Abdel Naby, Maged M.;Tadros, Mina Y.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제4권4호
    • /
    • pp.362-373
    • /
    • 2012
  • The ship recycling industry is growing rapidly. It is estimated that the International Maritime Organization's (IMO) decision to phase-out single hull tankers by 2015 will result in hundreds of ships requiring disposal. At present, the ship recycling industry is predominantly based in South Asia. Due to the bad practice of current scrapping procedure, the paper will highlight the harm occurring to health, safety and environment. The efforts of the Marine Environment Protection Committee (MEPC) which led to the signing of the Hong Kong International Convention are also reviewed. The criteria and standards required to reduce the risk and damage to the environment are discussed and a proposed plan for the safe scrapping of ships is then presented. A technological and economic study for the ship recycling in Egypt is carried out as a case study. This includes the ship recycling facility size and layout. The equipment and staff required to operate the facility are also evaluated. A cost analysis is then carried out. This includes site development, human resources, machineries and equipment. A fuzzy logic approach is used to assess the benefits of the ship breaking yard. The use of the fuzzy logic approach is found suitable to make decisions for the ship breaking industry. Based on given constraints, the proposed model has proved capable of assessing the profit and the internal rate of return.

Block layout method in the block stockyard based on the genetic algorithm

  • Roh, Myung-Il
    • Ocean Systems Engineering
    • /
    • 제2권4호
    • /
    • pp.271-287
    • /
    • 2012
  • Due to its large size, a ship is first divided into scores of blocks and then each block is constructed through various shops, such as the assembly shop, the painting shop, and the outfitting shop. However, each block may not be directly moved to the next shop and may be temporarily laid at a block stockyard because the working time in each shop is different from each other. If blocks are laid at the block stockyard without any planning, the rearrangement of the blocks by a transporter is required because the blocks have the different in and out time. In this study, a block layout method based on the genetic algorithm was proposed in order to minimize the rearrangement of the blocks in the block stockyard. To evaluate the applicability of the proposed method, it was applied to simple layout problems of the block stockyard. The result shows that the proposed method can yield a block layout that minimizes the total relocation cost of moving obstacle blocks in the block stockyard.

유전 알고리즘을 기반으로 한 조선소 블록 적치장의 재배치 최소화 (Minimization of the Rearrangement of a Block Stockyard Based on the Genetic Algorithm)

  • 노명일;임병석
    • 한국CDE학회논문집
    • /
    • 제16권3호
    • /
    • pp.207-215
    • /
    • 2011
  • Due to its large size, a ship is first divided into scores of blocks and then each block is constructed through various shops, such as the assembly shop, the painting shop, and the outfitting shop. However, each block may not be directly moved to the next shop and may be temporarily laid on a block stockyard because the working time in each shop is different. If blocks are laid on the block stockyard without any planning, the rearrangement of the blocks by a transporter are required because the blocks have the different in and out time. In this study, an optimal layout method based on the genetic algorithm was proposed in order to minimize the rearrangement of the blocks in the block stockyard. To evaluate the applicability of the proposed method, it was applied to a simple layout problem of the block stockyard.

New business opportunity: Green field project with new technology

  • Lee, Seung Jae;Woo, Jong Hun;Shin, Jong Gye
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권2호
    • /
    • pp.471-483
    • /
    • 2014
  • Since 2009 of global financial crisis, shipbuilding industry has undergone hard times seriously. After such a long depression, the latest global shipping market index shows that the economic recovery of global shipbuilding market is underway. Especially, nations with enormous resources are going to increase their productivity or expanding their shipyards to accommodate a large amount of orders expected in the near future. However, few commercial projects have been carried out for the practical shipyard layout designs even though those can be good commercial opportunities for shipbuilding engineers. Shipbuilding starts with a shipyard construction with a large scale investment initially. Shipyard design and the equipment layout problem, which is directly linked to the productivity of ship production, is an important issue in the production planning of mass production of ships. In many cases, shipbuilding yard design has relied on the experience of the internal engineer, resulting in sporadic and poorly organized processes. Consequently, economic losses and the trial and error involved in such a design process are inevitable problems. The starting point of shipyard construction is to design a shipyard layout. Four kinds of engineering parts required for the shipyard layout design and construction. Those are civil engineering, building engineering, utility engineering and production layout engineering. Among these parts, production layout engineering is most important because its result is used as a foundation of the other engineering parts, and also, determines the shipyard capacity in the shipyard lifecycle. In this paper, the background of shipbuilding industry is explained in terms of engineering works for the recognition of the macro trend. Nextly, preliminary design methods and related case study is introduced briefly by referencing the previous research. Lastly, the designed work of layout design is validated using the computer simulation technology.

시뮬레이션을 이용한 자동화 컨테이너 터미널의 AGV 운영평가 (Simulation-based Evaluation of AGV Operation at Automated Container Terminal)

  • 하태영;최용석;김우선
    • 한국항해항만학회지
    • /
    • 제28권10호
    • /
    • pp.891-897
    • /
    • 2004
  • 본 연구에서는 수직블록배치형태를 가지는 자동화 컨테이너 터미널을 대상으로 안벽과 야드의 연계작업을 수행하는 이송장비에 대한 시뮬레이션 모델을 수립하였다. 일반적으로 컨테이너 터미널은 안벽장비의 생산성으로 효율성이 평가되며, 안벽장비의 생산성을 최대화하기 위해서는 이송장비와 야드장비의 원활한 지원이 이루어져야 한다. 이중 이송장비는 안벽장비와 직접적으로 연계작업을 수행하므로 안벽장비의 생산성에 많은 영향을 미치는 요소이며, 운행대수와 주행방식에 따라 작업성능 또한 매우 달라지게 된다. 따라서, 본 연구에서는 이송장비의 작업생산성을 평가할 수 있는 시뮬레이션 모델을 개발하였으며, 수립된 모델을 통해 가상의 환경에서 다양한 이송장비의 운영에 따른 안벽장비의 생산성을 분석해 보았다.

Spatial Scheduling in Shipbuilding Industry

  • Duck Young Yoon;Varghese Ranjan;Koo Chung Kon
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2004년도 학술대회지
    • /
    • pp.106-110
    • /
    • 2004
  • In any large heavy industry like that of ship building, there exist a lot of complications for the arrangement of building blocks optimally for the minimal space consumption. The major problem arises at yard because of laxity in space for arranging the building blocks of ship under construction. A standardized erection sequence diagram is generally available to provide the prioritised erection sequence. This erection sequence diagram serves as the frame work. In order to make a timely erection of the blocks a post plan has to be developed so that the blocks lie in the nearest possible vicinity of the material handling devices while keeping the priority of erection. Therefore, the blocks are arranged in the pre-erection area. This kind of readiness of blocks leads to a very complex problem of space. This arises due to the least available space leading to an urgent need of an availability of intelligent spatial schedule without compromising the rate of production. There exists two critical problems ahead namely, the spatial occupation layout of pre-erection area and the emptying pattern in the spatial vicinity. The block shape is assumed be rectangular. The related input data's are the dates of erection (earliest as well as the latest), geometrical parameters of block available on pre-erection area, slack time and the like.

  • PDF