• Title/Summary/Keyword: Ship velocity

Search Result 455, Processing Time 0.027 seconds

Numerical Simulation on Laminar Flow past a Rotating Circular Cylinder (회전하는 원형 실린더 주위 층류유동장의 수치 시뮬레이션)

  • Park, Jong-Chun;Moon, Jin-Kook;Yoon, Hyun-Sik;Lee, Byung-Hyuk;Chun, Ho-Hwan;Suh, Sung-Bu
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.3
    • /
    • pp.1-10
    • /
    • 2005
  • The effect of rotation on the unsteady laminar flaw past a circular cylinder is numerically investigated in the present study. The numerical solutions for the 2D Navier-Stokes equation obtained, using two different numerical methods. One is an accurate spectral method and the other is a finite volume method(FVM). First, the flaw around a stationary circular cylinder is investigated to understand the basic phenomenon of flaw separation and bluff body wake. Next, the flow characteristics of the laminar flow, past a rotating circular cylinder, are investigated, using a FVM developed in this study. By the effect of rotation, it is seen that values of lift increase, while the values of mean drag decrease. Further, the criteria of angular velocity, at which the Karman vorteces disappear, is also determined.

Numerical Analysis for Hull Cleaning ROV Resistance Performance (선저청소로봇 저항성능 전산해석)

  • Seo, Jang-Hoon;Yoon, Hyun-Sik;Chun, Ho-Hwan;Kim, Su-Hu;Kim, Tae-Hyung;Woo, Jong-Sik;Joo, Young-Sock
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.64-74
    • /
    • 2008
  • The flaw around a ROV (Remotely Operated Vehicle) has been numerically investigated to improve resistance performance by modifying the hull form of the ROV. For the base hull form considered in this study, the form drag rather than the friction drag is dominant to the total drag Subsequently, the surfaces on which the local pressure highly acts have been modified to produce the streamlined-shape. Based on the surface modification, seven different hull forms have been chosen as candidates for drag reduction. Among the candidates, the semi-sphericalized housing and the streamlined-bow achieved greatest drag reduction comparing with the others. Consequently, the hull form combined with the semi-sphericalized housing and the streamlined-bow gave approximately 17% drag reduction at the design velocity of 3 knots.

The Interaction Effects Between Two Vessels in the Proximity of Bank Wall in Restricted Waterways (제한수역에서 측벽부근을 항해하는 두 선박간의 상호영향)

  • Lee Chun- Ki
    • Journal of Navigation and Port Research
    • /
    • v.29 no.1 s.97
    • /
    • pp.17-22
    • /
    • 2005
  • The manoeuvring of vessels and hydrodynamic interaction between them and bank wall in restricted waterways have been treated as important factors in channel design and safe piloting in the waterway areas. This paper examines the interaction forces and moments acting on two vessels running closely in the proximity of bank wall. The object of this paper is to propose a guideline of safe velocity of vessels and distance between them for navigating safely in confined sea areas.

Study on the Charactistics of Cavitation Erosion-Corrosion for Mild Steel(3) - Behavior of Erosion-Corrosion Damage Suppression Under Vibration Cavitation- (연강의 캐비테이션 침식-부식 특성에 관한 연구 (3) - 진동 캐비테이션 손상 억제 거동 -)

  • Hwang, Jae-Ho;Lim, Uh-Joh;Jeong, Ki-Cheol
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.33 no.3
    • /
    • pp.202-208
    • /
    • 1997
  • The component materials threatened by cavitation include ship propellers as well as turbine runners, pump impellers, pipe lines and radiators. Today it is known that cavitation damage takes place on many other components including on the coding water side of the cylinder liners of diesel engines. Cavitation erosion - corrosion implies damage to materials due to the shock pressure or shock wave that results when bubbles form and collapse at a metal surface within a liquid. To suppress cavitation erosion as well as cavitation erosion - corrosion to hydraulic equipment, innovations such as the improvement in the geometric design of the equipment or the selection of suitably resistant construction materials are necessary. In this study, we investigated that the cavitation erosion - corrosion damage under vibratory cavitation can be reduced by adding of side now velocity to the cavitation bubble group in order to eliminate bubbles formed in sea water environment.

  • PDF

Numerical Simulation for the Rudder in order to Control the Cavitation Phenomena

  • Boo, Kyung-Tae;Song, In-Hang;Soochul Shin
    • Journal of Ship and Ocean Technology
    • /
    • v.8 no.1
    • /
    • pp.42-50
    • /
    • 2004
  • In these ten years, the cavitation and erosion phenomena in the rudder have been increased for high-speed container ships. The cavitation in the rudder blades which is injurious to rudder efficiency is mainly caused by the main flow with a large angle of attack induced by propellers, and the erosion which occurs as a result of repeated blows by shock wave that cavitation collapse may produce was observed in the gap legion of the rudder. However, gap cavitation is not prone to occur in model experiments because of low Reynolds number. So, the viscous effect should be considered for solving the flow of the narrow gap. In order to predict the cavitation phenomena and to improve the performance of the rudder, the analysis of the viscous flow in the rudder gap is positively necessary. In this study, numerical calculation for the solution of the RANS equation is applied to the two-dimensional flow around the rudder gap including horn part and pintle part. The velocity and pressure field are numerically acquired according to Reynolds number and the case that the round bar is installed in the gap is analyzed. For reduced the acceleration that pressure drop can be highly restrained numerically and in model experiment, the cavitation bubbles can be reduced.

Design of Neural-Network Based Autopilot Control System(II) (신경망을 이용한 선박용 자동조타장치의 제어시스템 설계 (II))

  • Kwak, Moon Kyu;Suh, Sang-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.3
    • /
    • pp.19-26
    • /
    • 1997
  • This paper is concerned with the design of neural-network based autopilot control system. The back-propagation neural network introduced in the previous paper by authors is applied to the autopilot control system. As a result, two neural-network controllers are developed, which are the model reference adaptive neural controller and the instantaneous optimal neural controller. The model reference adaptive neural controller is the control technique that the heading angle and angular velocity are controlled by the rudder angle to follow the output of the reference model. The instantaneous optimal neural controller optimizes the transition from one state to the next state. These control techniques are applied to a simple ship maneuvering model and their effectiveness is proved by numerical examples.

  • PDF

Investigation on the Powering Performance Prediction for Azimuth Thrusters

  • Van, Suak-Ho;Yoon, Hyun-Se
    • Journal of Ship and Ocean Technology
    • /
    • v.6 no.1
    • /
    • pp.27-33
    • /
    • 2002
  • Recently, the application of the electric propulsion system becomes popular because of its advantage over conventional propulsion. However, the complicated flow mechanism and interaction around the azimuth thruster are not fully understood yet, and the studies on the powering performance characteristics with azimuth/pod thrusters are now in progress. The experimental method developed in KRISO(Korea Research Institute of Ships & Ocean Engineering) is introduced and the results of the powering performance tests, consisting of resistance, self-propulsion and propeller open water tests for a cable layer with two azimuth thrusters are presented. For the analysis of powering performance with azimuth thrusters, it is necessary to evaluate the thrust/drag for components of a thruster unit, Extrapolation results could differ according to the various definitions of the propulsion unit; that is the pod, thruster leg and/or nozzle can be treated as hull appendages or as part of propulsion unit, The powering performances based on several definitions are investigated for this vessel. The results of the measurements for the 3-dimensional velocity distribution on the propeller plane are presented to understand the basis of the difference in propulsion characteristics due to the propeller rotational directions.

Suggestion of a design load equation for ice-ship impacts

  • Choi, Yun-Hyuk;Choi, Hye-Yeon;Lee, Chi-Seung;Kim, Myung-Hyun;Lee, Jae-Myung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.4
    • /
    • pp.386-402
    • /
    • 2012
  • In this paper, a method to estimate ice loads as a function of the buttock angle of an icebreaker is presented with respect to polycrystalline freshwater ice. Ice model tests for different buttock angles and impact velocities are carried out to investigate ice pressure loads and tendencies of ice pressure loads in terms of failure modes. Experimental devices were fabricated with an idealized icebreaker bow shape, and medium-scale ice specimens were used. A dry-drop machine with a freefall system was used, and four pressure sensors were installed at the bottom to estimate ice pressure loads. An estimation equation was suggested on the basis of the test results. We analyzed the estimation equation for design ice loads of the International Association of Classification Societies (IACS) classification rules. We suggest an estimation equation considering the relation between ice load, buttock angle, and velocity by modifying the equations given in the IACS classification rules.

Study on the Resultant Vorticity Numerical Model of the Propeller Wake (프로펠러 후류의 총와도 수식모델 연구)

  • Park, Hui-Seung;Yoon, Hyun-Sik;Kim, Moon-Chan;Chun, Ho-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.2
    • /
    • pp.141-146
    • /
    • 2011
  • This study numerically carried out the propeller open water test(POW) by solving Navier-Stokes equations governing the three-dimensional unsteady incompressible viscous flow with the turbulence closure model of the ${\kappa}-{\omega}$ SST model. Numerical simulations are performed at various range of advance ratios. Corresponding to Reynolds numbers of $5.89{\times}105{\sim}6.47{\times}105$ based on free stream velocity and the chord length at 0.7 propeller radius. The present results give a good agreement with those of the experiment. The propeller induced vortical structures have been analyzed by visualizing the resultant vorticity. As the advance ratio increases, the magnitude and length of the resultant vorticity decrease significantly. As the main focus of present study, the numerical model to present the ($r-{\theta}$) plane-averaged resultant vorticity along the streamwise direction for various advance ratios has been suggested.

Theoretical Approach of Development of Tracking Module for ARPA system on Board Warships

  • Jeong, Tae-Gweon;Pan, Bao-Feng;Njonjo, Anne Wanjiru
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2015.10a
    • /
    • pp.53-54
    • /
    • 2015
  • The maritime industry is expanding at an alarming rate and as such there is a perpetual need to improve situation awareness in the maritime environment using new and emerging technology. Tracking is one of the numerous ways of enhancing situation awareness by providing information that may be useful to the operator. The tracking system described herein comprises determining existing states of own ship, state prediction and state compensation caused by random noise. The purpose of this paper is to analyze the process of tracking and develop a tracking algorithm by using ${\alpha}-{\beta}-{\gamma}$ tracking filter under a random noise or irregular motion for use in a warship. The algorithm involves initializing the input parameters of position, velocity and course. The actual positions are then computed for each time interval. In addition, a weighted difference of the observed and predicted position at the nth observation is added to the predicted position to obtain the smoothed position. This estimation is subsequently employed to determine the predicted position at (n+1). The smoothed values, predicted values and the observed values are used to compute the twice distance root mean square (2drms) error as a measure of accuracy of the tracking module.

  • PDF