• Title/Summary/Keyword: Ship manoeuvring motion

Search Result 32, Processing Time 0.02 seconds

A Study on Response Functions of Manoeuvring Motion of a Ship in Regular Waves (규칙파에 대한 조종운동의 응답함수에 관한 고찰)

  • 손경호;이경우;김진형
    • Journal of the Korean Institute of Navigation
    • /
    • v.18 no.4
    • /
    • pp.11-21
    • /
    • 1994
  • Final aim of this paper is a study on simulation of automatic steering of a ship in random seas. In order to achieve this aim, we need excitation due to random seas. The excitation may be estimated from energy spectrum of irregular waves and response functions of manoeuvring motion of a ship in regular waves. This paper deals with response functions of manoeuvring motion of a ship in regular waves. We discussed New Strip Method(NSM) of sway-yaw-roll coupled motions in regular waves. NSM is defined in space axes system and that has been used to predict seakeeping performance of a ship in waves. But ship manoeuvring is defined in body fixed axes system. So we cannot use NSM theory itself in predicting manoeuvring performance of a ship in waves. We introduced relationship between space axes system and body fixed axes system. And we developed modified NSM which was defined in body fixed axes system and was able to be used in manoeuvring motion of a ship in waves. We calculated sway and yaw response functions of manoeuvring motion of a bulk carrier in regular waves.

  • PDF

A Study on New Mathematical Model of Ship Manoeuvring Motion Taking Coupling Effect of Roll into Consideration (횡동요를 고려한 선박조종운동의 새로운 수학모델에 관한 연구)

  • Sohn, Kyoung-ho;Kim, Yong-min
    • Journal of Navigation and Port Research
    • /
    • v.27 no.5
    • /
    • pp.451-458
    • /
    • 2003
  • A ship with small metacentric height or high speed vessel performs relatively large roll angles in her manoeuvring motion. Roll coupling effect should be taken into consideration for accurate prediction of manoeuvring motion of such a ship. This paper proposes a new mathematical model of ship manoeuvring motion taking coupling effect of roll into consideration. Some kinds of manoeuvring motion are simulated by computer, based upon the proposed model. The simualted results by proposed model here are compared with those by existing model. The proposed model is found to be practical and useful for prediction of manoeuvring motion with roll effect.

On the Mathematical Model for Estimating Manoeuvring Performance of Ships (선박의 조종성능평가를 위한 수학모델에 관한 연구)

  • 손경호
    • Journal of the Korean Institute of Navigation
    • /
    • v.13 no.2
    • /
    • pp.57-73
    • /
    • 1989
  • This paper presents a practical method to predict the characteristics of ship manoeuvring motions. A attempt is made to calculate the manoeuvring motions utilizing principal particulars of ship hull, properller and rudder as basic input data. The mathematical models, which describe the ship manoeuvring motions, are developed on the basis of MMG(5), Inoue(17), Hooft(18) and so on. Calcuations of manoeuvring motions for three kinds of typical characteristics, namely turning motion, zig-zag manoeuvre response and steady turning performance, are carried out. In order to examine the validity of the calculation method of this paper, simulations are run for seven merchant ships employed by Inoue(4). The computed results by present method are compared with full scale trials and Inoue's calculations(4). It can be concluded that the calculation method proposed in this paper is useful and pwoerful for prediction of characteristics of ship manoeuvring motions at the initial design phase or the application study on manoeuvring motions.

  • PDF

Ship Manoeuvring Performance Experiments Using a Free Running Model Ship

  • Im, Nam-Kyun;Seo, Jeong-Ho
    • Journal of Navigation and Port Research
    • /
    • v.33 no.9
    • /
    • pp.603-608
    • /
    • 2009
  • In this paper, a 3m-class free running model ship will be introduced with its manoeuvring performance experiments. The results of turning circle test and zig-zag test will be explained. The developed system are equipped with GPS, main control computer, wireless LAN, IMU (Inertial Measurement Unit), self-propulsion propeller and driving rudder. Its motion can be controlled by RC (Radio Control) and wireless LAN from land based center. Automatic navigation is also available by pre-programmed algorithm. The trajectory of navigation can be acquired by GPS and it provides us with important data for ship's motion control experiments. The results of manoeuvring performance experiment have shown that the developed free running model ship can be used to verify the test of turning circle and zig-zag. For next step, other experimental researches such as ship collision avoidance system and automatic berthing can be considered in the future.

On the Manoeuvring Motion Considering the Interaction Forces in Confined Waters

  • Lee, Chun-Ki;Kang, Il-Kwon
    • Journal of Navigation and Port Research
    • /
    • v.27 no.6
    • /
    • pp.639-643
    • /
    • 2003
  • The emphasis is put on the detailed knowledge on manoeuvring characteristic for the safe navigation while avoiding terrible collision between ships and on the guideline to the design and operation of the ship-waterway system The numerical simulation of manoeuvring motion was carried out parametrically for different ship types, ship-velocity ratios, separation and stagger between ships. As for the calculation parameters, the ratios of velocity difference (hereafter, $U_2$/$U_1$ ) between two ships were considered as 0.6, 1.2, 1.5. From the inspection of this investigation, it indicates the following result. Considering the interaction force only as parameter, the lateral distance between ships is necessarily required for the ship-velocity ratio of 1.2, compared to the cases of 0.6 and 1.5 regardless of the ship types. Furthermore, regardless of the ship-velocity ratio, an overtaking and overtaken vessel can be manoeuvred safely without deviating from the original course under the following conditions: the lateral distance between two vessels is approximately kept at 0.5 times of ship-length and 5 through 10. degrees of range in maximum rudder angle. The manoeuvring characteristic based on this investigation will be very useful for keeping the safety of navigation from the practical point of ships design and traffic control in restricted waterways.

Prediction of a research vessel manoeuvring using numerical PMM and free running tests

  • Tiwari, Kunal;Hariharan, K.;Rameesha, T.V.;Krishnankutty, P.
    • Ocean Systems Engineering
    • /
    • v.10 no.3
    • /
    • pp.333-357
    • /
    • 2020
  • International Maritime Organisation (IMO) regulations insist on reduced emission of CO2, noxious and other environmentally dangerous gases from ship, which are usually let out while burning fossil fuel for running its propulsive machinery. Contrallability of ship during sailing has a direct implication on its course keeping and changing ability, and tries to have an optimised routing. Bad coursekeeping ability of a ship may lead to frequent use of rudder and resulting changes in the ship's drift angle. Consequently, it increases vessels resistance and also may lead to longer path for its journey due to zigzag movements. These adverse effects on the ship journey obviously lead to the increase in fuel consumption and higher emission. Hence, IMO has made it mandatory to evaluate the manoeuvring qualities of a ship at the designed stage itself. In this paper a numerical horizontal planar motion mechanism is simulated in CFD environment and from the force history, the hydrodynamic derivatives appearing in the manoeuvring equation of motion of a ship are estimated. These derivatives along with propeller thrust and rudder effects are used to simulate different standard manoeuvres of the vessel and check its parameters against the IMO requirements. The present study also simulates these manoeuvres by using numerical free running model for the same ship. The results obtained from both these studies are presented and discussed here.

Prediction of Ship Manoeuvrability in Initial Design Stage Using CFD Based Calculation

  • Cho, Yu-Rim;Yoon, Bum-Sang;Yum, Deuk-Joon;Lee, Myen-Sik
    • Journal of Ship and Ocean Technology
    • /
    • v.11 no.1
    • /
    • pp.11-24
    • /
    • 2007
  • Better prediction of a ship's manouevrabilty in initial design stage is becoming more, important as IMO manoeuvring criteria has been activated in the year of 2004. In the present study, in order to obtain more exact and reliable results for ship manoeuvrability in the initial design stage, numerical simulation is carried out by use of RANS equation based calculation of hydrodynamic forces exerted upon the ship hull. Other forces such as rudder force and propeller force are estimated by one of the empirical models recommended by MMG Group. Calculated hydrodynamic force coefficients are compared with those obtained by empirical models. Standard manoeuvring simulations such as turning circle and zig-zag are also carried out for a medium size Product Carrier and the results are compared with those of pure empirical models and manoeuvring sea trial. Generally good qualitative agreement is obtained in hydrodynamic forces due to steady oblique motion and steady turning motion between the results of CFD calculation and those of MMG model, which is based on empirical formulas. The results of standard manoeuvring simulation also show good agreement with sea trial results.

On a Ship Manoeuvring Simulator Newly Developed by Korea Maritime University

  • Sohn, Kyoung-Ho;Kim, Jin-Kook;Yang, Seung-Yeul
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2002.10a
    • /
    • pp.111-124
    • /
    • 2002
  • Ship manoeuvring simulator has been widely utilized for training mariners, for assessing safety, for developing harbour and port, and for designing ships. We discuss a ship manoeuvring simulator which has been newly developed by Korea Maritime University. The simulator consists of simulator bridge and control console. All the computers used in the simulator are connected with one another by UDP or TCP network system. All the instruments are connected with interface computer by signal line which is controlled by RS232 communication protocol, or by voltage controlled A/D board. Next the mathematical model of ship manoeuvring motion in harbour areas, and ship and terrain modeling technique are also briefly discussed. Finally using the simulator an experiment of distance cognition and a simulation example of berthing/deberthing manoeuvre are shown.

  • PDF

Prediction of Ship Manoeuvring Performance Based on Virtual Captive Model Tests (가상 구속모형시험을 이용한 선박 조종성능 평가)

  • Sung, Young Jae;Park, Sang-Hun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.5
    • /
    • pp.407-417
    • /
    • 2015
  • For the more accurate prediction on manoeuvring performance of a ship at initial design phase, bare hull manoeuvring coefficients were estimated by RANS(Reynolds Averaged Navier-Stokes) based virtual captive model tests. Hydrodynamic forces and moment acting on the hull during static drift and harmonic oscillatory motions were computed with a commercial RANS code STAR-CCM+. Automatic and consistent mesh generation could be implemented by using macro functions of the code and user dependency could be greatly reduced. Computed forces and moments on KCS and KVLCC 1&2 were compared with the corresponding measurements from PMM(Planar Motion Mechanism) tests. Quite good agreement can be observed between the CFD and EFD results. Manoeuvring coefficients and IMO standard manoeuvres estimated from the computed data also showed reasonable agreement with those from the experimental data. Based on these results, we could confirm that the developed virtual captive manoeuvring model test process could be applied to evaluate manoeuvrability of a ship at the initial hull design phase.

A Study on Construction of Collision Reproducing Simulator and Application to Analysis of Marine Casualty

  • Sohn, Kyoung-ho;Bae, Jun-young
    • Journal of Navigation and Port Research
    • /
    • v.28 no.2
    • /
    • pp.113-119
    • /
    • 2004
  • Ships' collision accident has often occurred in congested waterways or in harbour areas. To examine the cause of collision accident may be necessary to prevention against another similar one. We discuss the construction of ship-manoeuvring-simulator system used for reproducing ships' collision phenomenon The system consists of one simulator bridge for own ship and two control consoles for own ship and target ship. Own ship and target ship are linked each other, and are simultaneously manoeuvred in simulator bridge or at control console respectively. And a simulator experiment for reproducing ships' collision phenomenon and for examining the cause of accident is carried out. Through the present case study, we find out that the constructed simulator system is very useful for reproducing ships' collision phenomenon and for examining the cause of accident.