• 제목/요약/키워드: Ship fabrication

검색결과 68건 처리시간 0.026초

조선 선각가공공정에서 부재가공을 위한 Bay 및 가공기계의 선택 (Bay and Machine Selection for the Parts Fabrication of Ship Hull Construction)

  • 박창규;서윤호
    • 산업공학
    • /
    • 제12권3호
    • /
    • pp.395-400
    • /
    • 1999
  • Shipbuilding process is composed of hull construction, in which the structural body of a ship is formed, and outfitting, in which all the non-structural parts such as pipes, derricks, engines, machinery, electrical cable, etc. are manufactured, added and assembled. Hull construction can be classified into parts fabrication, block assembly and hull erection. Among them, the parts fabrication is the first manufacturing stage that produces components or zones needed for block assembly and hull construction. More specifically, the parts fabrication is performed through machining processes including marking, cutting, pressing, and/or forming. When material is entering into the parts fabrication stage, it is important for achieving the total efficiency of production to select one of production division, so-called 'bay,' as well as machine tools on which the part is fabricated. In this paper, given production quantities of parts in the fabrication stage, the problem is to optimally select machine tools and production division, such that the total flow-time is minimized as well as the workload among machines is balanced. Specifically, three mathematical models for flow-time minimization, load balance, and simultaneously considering both objectives, and a numerical example are analyzed and presented.

  • PDF

비정형 건축물 구현을 위한 Digital Fabrication의 활용방법 연구 -롯데월드타워 3D 포디움 시공사례- (Study of Freeform Buildings using the Digital Fabrication)

  • 김성진;박영미;박정준
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2017년도 추계 학술논문 발표대회
    • /
    • pp.52-53
    • /
    • 2017
  • Through the case study, we surveyed an applicability of digital fabrication in irregular-shaped building construction project. By digital fabrication, we mean is a precision manufacturing method has been used in aircraft, ship and car manufacturing industry. We collected construction-completed "LotteWorld Tower Podium" project data and analyzed its process in terms of construction quality andduration. The result shows that digital fabrication is considered a competitive technology that enabled to complete the project in seven months within 3mm surface curvature threshold. The digitalfabrication is expected to apply on a number of irregular-shaped building construction project.

  • PDF

선체의 태양복사 열변형 해석을 위한 전처리시스템 (A System for Thermal Distortion Analysis of Hull Structures by Solar Radiation)

  • 하윤석;이동훈
    • 대한조선학회논문집
    • /
    • 제53권4호
    • /
    • pp.275-281
    • /
    • 2016
  • One of the most important things for quality to meet ship-production schedule is an accuracy control. A ship is assembled by welding through whole production process, so it is important that loss by correction will not happen as much as possible by using some engineering skills like reverse design, reverse setting and margin for thermal shrinkage. These efforts are a quite effective in fabrication stages, but not in erection stages. If a ship block which consists of common steel is exposed to directional solar radiation, its dimensional accuracy will change high as time by its thermal expansion coefficient. Therefore, the measuring work would be often done at dawn or evening even with having a very accurate device. In this study, an FE analysis method is developed to solve this problem. It can change measured data affected by solar thermal distortion to ones not, even though ship-block is measured at an arbitrary time. It will use the time when measuring, the direction of block and the weather record by satellites. It is confirmed by a comparison between measured data of a ship-block and the result by suggested analysis method. Furthermore, a pre-processing system is also developed for fast application of the suggested analysis method.

선체판부재의 2차좌굴거동에 관한 연구 (A Study on the Secondary Buckling Behavior of Ship Plate)

  • 고재용
    • 한국항해학회지
    • /
    • 제20권1호
    • /
    • pp.47-58
    • /
    • 1996
  • The use of high tensile steel plates is increasing in the fabrication of ship and offshore structures. The main portion of ship structure is usually composed of stiffened plates. In these structures, plate buckling is one of the most important design criteria and buckling load may usually be obtained as an eigenvalue solution of the governing equations for the plate. To use the high tensile steel plate effectively, its thickness may become thin so that the occurrence of buckling is inevitable and design allowing plate buckling may be necessary. When the panel elastic buckling is allowed, it is necessary to get precise understandings about the post-buckling behaviour of thin plates. It is well known that a thin flat plate undergoes secondary buckling after initial buckling took place and the deflection of the initial buckling mode was developed. From this point of view, this paper discusses the post-buckling behaviour of thin plates under thrust including the secondary buckling phenomenon. Series of elastic large deflection analyses were performed on rectangular plates with aspect ratio 3.6 using the analytical method and the FEM.

  • PDF

CSR 을 활용한 이중선각유조선 중앙단면의 최적구조설계 (Optimum Structural Design of Mid-ship Section of D/H Tankers Based on Common Structural Rules)

  • 나승수;전형근
    • 대한조선학회논문집
    • /
    • 제45권2호
    • /
    • pp.151-156
    • /
    • 2008
  • It is necessary to perform the research works on the general structural designs and optimum structural designs of double hull tankers and bulk carriers due to the newly built Common Structural Rules(CSR). In this study, an optimum structural design of a mid-ship part of double hull oil tanker was carried out by using the CSR. An optimum structural design program was developed by using the Pareto optimal based multi-objective function method. The hull weight and fabrication cost obtained by the single and multi-objective function methods were compared with existing ship by the consideration of CSR and material cost which is recently increasing.

자유도 제약을 이용한 블록의 완성도 평가 연구 (A Research on Completeness Assessment of Blocks using DOF Restriction)

  • 김찬석;신종계;노재규
    • 대한조선학회논문집
    • /
    • 제51권5호
    • /
    • pp.356-361
    • /
    • 2014
  • Accurate block shape assessment is critical for ship manufacturing and a careful assessment of the shape of a fabricated block against the design shape is a core issue. However, in current fabrication practice, the shape of each block is evaluated manually using rigid body transformation. This manual evaluation process entirely depends on workers' experiences and knowledge and makes automation of block shape assessment difficult. In this paper we propose a computation method on the registration for shape assessment of a block during the fabrication process and for evaluation of its completion against the design shape. A conversion on matching method by adding DOF(degree of freedom) restriction is required to reach the goals. We test our method using a real block quality assessment data to demonstrate its applicability to real ship manufacturing process.

Machine Learning Methodology for Management of Shipbuilding Master Data

  • Jeong, Ju Hyeon;Woo, Jong Hun;Park, JungGoo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.428-439
    • /
    • 2020
  • The continuous development of information and communication technologies has resulted in an exponential increase in data. Consequently, technologies related to data analysis are growing in importance. The shipbuilding industry has high production uncertainty and variability, which has created an urgent need for data analysis techniques, such as machine learning. In particular, the industry cannot effectively respond to changes in the production-related standard time information systems, such as the basic cycle time and lead time. Improvement measures are necessary to enable the industry to respond swiftly to changes in the production environment. In this study, the lead times for fabrication, assembly of ship block, spool fabrication and painting were predicted using machine learning technology to propose a new management method for the process lead time using a master data system for the time element in the production data. Data preprocessing was performed in various ways using R and Python, which are open source programming languages, and process variables were selected considering their relationships with the lead time through correlation analysis and analysis of variables. Various machine learning, deep learning, and ensemble learning algorithms were applied to create the lead time prediction models. In addition, the applicability of the proposed machine learning methodology to standard work hour prediction was verified by evaluating the prediction models using the evaluation criteria, such as the Mean Absolute Percentage Error (MAPE) and Root Mean Squared Logarithmic Error (RMSLE).

고주파 유도가열을 이용한 오목 곡면 곡가공에 관한 연구 (A Study on the Concave Type Hull Plate Forming using Induction Heating System)

  • 현충민;김대경;문승환;박정서;도규원
    • 대한조선학회논문집
    • /
    • 제56권2호
    • /
    • pp.128-134
    • /
    • 2019
  • In shipbuilding, accurate fabrication of curved hull plates is one of the most important steps, since the shape of ship hull, which is very critical in the overall performance of a ship, is a collection of such plates. The curved hull plates forming process requires a significant amount of time by skilled workers in shipbuilding. In general, the workers cause thermal distortion in the plate and forming initial shape using gas heat source. So shipbuilding companies need skilled workers who have long experience. To solve the problem, a lot of researchers tried to develop automation system for curved hull plates. In this paper, we propose automatic heating system with gantry robot, high frequency induction heater to replace the gas heat source and automatic measurement system. We apply the system to forming concave type plate that is actually used in ship manufacturing. In addition, a system was developed to automatically generate heating information, such as the heating location and the heating speed, for actual heating process. Then the system was applied to the actual heating material. It is shown that the proposed triangle heating pattern makes desired concave shape successfully. The induction heating system showed that it can be used for automation system of curved hull plates forming process replacing gas heat source.

컨테이너 운반선 해치-커버 제작시 전 굽힘 변형 거동에 관한 연구 (Behavior of Global Bending Distortion of Hatch-cover in Container Carrier during Fabrication Process)

  • 이동주;김경규;신상범
    • Journal of Welding and Joining
    • /
    • 제28권4호
    • /
    • pp.41-48
    • /
    • 2010
  • The purpose of this study is to establish the control method of the global bending distortion caused by fabrication process of hatch-cover in a container ship. In order to do it, the transitional behavior of global bending distortion in the deck of hatch-cover during fabrication process was measured by 3-dimensional measuring instrument. From the results, the principal factor controlling the global bending distortion was identified as the bending moment associated with the longitudinal shrinkage force and transverse shrinkage caused by welding and flame heating and the change of the centroid axis of hatch-cover in each fabrication process. Therefore, in this study, with the predictive equations of the longitudinal shrinkage force and transverse shrinkage caused by welding and flame heating and the simplified thermo elastic method, the predictive method for the global bending distortion was established and verified by comparing with the measured result. Based on the results, the amount of reverse bending distortion of main stiffeners was determined to prevent the global bending distortion of hatch-cover.