• Title/Summary/Keyword: Ship Vibration Analysis

Search Result 218, Processing Time 0.023 seconds

Experimental Method of a Super Structure (선체 상부구조물의 실험적 해석)

  • 박석주;박성현;오창근;제해광
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.328-334
    • /
    • 2001
  • Up to now. vibration analysis and vibration engineering have been developed, encompassing the aspects of both experimental and analytical techniques. Using experimental modal analysis or modal testing, the mode shapes and frequencies of practical structure can be measured accurately. Curve-Fitting Method is realized through experimental modal identification. In the experimental modal parameter estimation, the estimation of modal damping factor is difficult for complicated and large structure. Also numbers of Selected mode are determined before the procedure. This paper describes the vibration shape of the super-structure model of ship through experimental modal analysis.

  • PDF

Design Sensitivity Analysis for the Vibration Characteristic of Vehicle Structure (수송체 구조물의 진동특성에 관한 설계민감도 해석)

  • 이재환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.19-24
    • /
    • 1992
  • Design sensitivity analysis method for the vibration of vehicle structure is developed using adjoint variable method. A variational approach with complex response method is used to derive sensitivity expression. To evaluate sensitivity, FEM analysis of ship deck and vehicle structure are performed using MSC/NASTRAN on the super computer CRAY2S, and sensitivity computation is carried on PC. The accuracy of sensitivity is verified by the results of finite difference method. When compared to structural analysis time on CRAY2S, sensitivity computation is remarkably economical. The sensitivity of vehicle frame can be used to reduce the vibration responses such as displacement and acceleration of vehicle.

  • PDF

Development of Computer Program of Torsional Vibration Analysis for Design of Diesel Engine Propulsion Shafting (디젤기관 추진축계의 설계를 위한 비틀림 진동해석 전산프로그램의 개발)

  • Choi, M.S.;Moon, D.H.;Sim, J.M.
    • Journal of Power System Engineering
    • /
    • v.7 no.2
    • /
    • pp.23-28
    • /
    • 2003
  • It is very important to analyze the torsional vibration for the propulsion shafting of ship. The authors have developed the transfer stiffness coefficient method(TSCM) as a vibration analysis algorithm. The concept of the TSCM is based on the successive transfer of stiffness coefficient. The effectiveness of the TSCM was verified through many applications. In this paper, the TSCM is applied to the torsional free vibration analysis for the propulsion shafting of an actual shin with a diesel engine. In order to calculate the additional torsional stresses of the propulsion shafting the torsional forced vibration for the shafting is analyzed by using both the modal analysis method and the results of the torsional free vibration analysis by the TSCM. The accuracy of the present method is confirmed by comparing with the vibration analysis results of engine maker.

  • PDF

Design Enhancement to Avoid Radar Mast Resonance in Large Ship using Design of Experiments (실험계획법을 이용한 대형 선박용 레이더 마스트의 공진회피 설계)

  • Park, Jun Hyeong;Lee, Daeyong;Yang, Jung-Wook;Song, Chang Yong
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.50-60
    • /
    • 2019
  • Recently, problems with excessive vibration of the radar masts of large bulk carriers and crude oil tankers have frequently been reported. This paper explores a design method to avoid the resonance of a radar mast installed on a large ship using various design of experiment (DOE) methods. A local vibration test was performed during an actual sea trial to determine the excitation sources of the vibration related to the resonant frequency of the radar mast. DOE methods such as the orthogonal array (OA) and Latin hypercube design (LHD) methods were used to analyze the Pareto effects on the radar mast vibration. In these DOE methods, the main vibration performances such as the natural frequency and weight of the radar mast were set as responses, while the shape and thickness of the main structural members of the radar mast were set as design factors. From the DOE-based Pareto effect results, we selected the significant structural members with the greatest influence on the vibration characteristics of the radar mast. Full factorial design (FFD) was applied to verify the Pareto effect results of the OA and LHD methods. The design of the main structural members of the radar mast to avoid resonance was reviewed, and a normal mode analysis was performed for each design using the finite element method. Based on the results of this normal mode analysis, we selected a design case that could avoid the resonance from the major excitation sources. In addition, a modal test was performed on the determined design to verify the normal mode analysis results.

Development of A transmission for High-Speed Ship (고속 선박용 변속장치 개발)

  • Kim, In-Hwan;Lee, Hyoung-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.8
    • /
    • pp.843-852
    • /
    • 2006
  • Vibration/noise analysis as well as strength of planetary gear train are considered in order to develop a transmission for a high-speed ship. The vibration model of a gear pair is developed with considering the elastic deformation of the active teeth and the body to be a rigid. Excitation forces of the transmission system are considered as the mass unbalance of the rotors. misalignment and a function of gear transmission error which comes from the modified tooth surface. A Campbell diagram, in which the excitation sources caused by the mass unbalance of the rotors. misalignment and the transmitted errors of the gearing are considered shows that, at the operating speed, there are not the critical speed.

Vibration analysis of a DWT 1,000-ton ocean-research vessel with electric propulsion

  • Bae, Dong-Myung;Cao, Bo;Chen, Tuo-Han
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.50 no.1
    • /
    • pp.75-82
    • /
    • 2014
  • In vibration analysis of ships, the principle aim is to determine the natural frequencies and excitation frequencies, and use this information to avoid resonances and vibration damage. The simplest method is to prevent resonance conditions, which is effective as long as the natural frequencies and excitation frequencies can be regarded as independent from environmental conditions. For ships that use electric propulsion systems, the sources of vibration are reduced compared with those caused by a diesel engine or other combustion-based propulsion systems. However, the frequency spectrum of these vibrations may be different; therefore, to understand the characteristics of the electric propulsion, we also should investigate how the ship responds to these vibrations. We focused on a 1,000-ton deadweight (DWT) ocean-research vessel using an electric propulsion system and analyzed the response to vibration.

A Study on Dynamic Strength Analysis of Submarine Considering Underwater Explosion (내충격 성능을 고려한 수중함 동적 강도 설계에 관한 연구)

  • Son, Sung-Wan;Choi, Su-Hyun;Kim, Kuk-Su
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1185-1191
    • /
    • 2000
  • In general, the strength of hull structures can be estimated from stress evaluation considering static and hydro-dynamic load due to sea-wave. However, war ships such as submarine, have frequently experienced the underwater explosion and local structures of ship as well as hull girder can be damaged by the dynamic response excited from underwater non-contact explosion. When explosion happens at underwater, shock wave is radiated In early short time, then gas bubbles are generated, and expansion and contraction are repeated as they float to the surface. The shock wave causes the damage of equipment and its supporting structures, on the other hand, the hull girder strength can be lost by resonance between bubble pulsation and lowest ship natural vibration period. In this paper, the hydro-Impulse force due to bubble was calculated. Based on these results the hull girder strength of submarine was estimated from transient response analysis by using NASTRAN. Also, shock analysis for some equipment supporting structures was carried out by using DDAM. In order to evaluate the strength of these local structures due to shock wave.

  • PDF

The Reduction of Harmonic Dynamic Response of Plate Structure Using Continuum Design Sensitivity Analysis (연속법에 의한 설계민감도를 이용한 판구조물의 조화진동저감)

  • 이재환;이광한
    • Journal of KSNVE
    • /
    • v.6 no.1
    • /
    • pp.27-34
    • /
    • 1996
  • In this paper, design sensitivity of vibration displacement and acceleration is computed and design sensitivity, the derivative information of responses with respect to design perameters, is used as a design guidance tool to reduce the vibration. First, the harmonic vibration analysis of deck and simplified ship structures is performed by finite element method and secondly continuum disign sensityivity for excessive dynamic response is computed by continuum method. Both the direct and modal frequency response methods for the finite element analysis are adopted. Sensitivities of structural components such as upper plate, side wall, bilge, bottom plate are compared and the reductionof vibration is obtained by the proper increase of thickness of each component.

  • PDF

Vibration Power Flow Analysis of Ship Structures Using SEA Parameter(Coupling Loss Factor) (SEA 파라미터(연성손실계수)를 이용한 선박의 진동 파워흐름해석)

  • Park, Young-Ho;Hong, Suk-Yoon;Park, Do-Hyun;Seo, Seong-Hoon;Kil, Hyun-Gwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.291-300
    • /
    • 2000
  • This paper proposes the new hybrid analysis of vibration in the medium to high frequency ranges including PFA and SEA concept. The core part of this method is the applications of coupling loss factor(CLF) instead of power transmission, reflection coefficients in boundary condition. This method shows very promising compared to the classical PFA for the various damping loss factors and wide ranges of frequencies. Besides this paper presents the applicable method in Power Flow Finite Element Method by forming the joint element matrix with CLF. These hybrid concepts are expected to improve SEA and PFA methods in vibration analysis.

  • PDF

A Study on the Finite Element Modeling Methods of Large Navy Shipboard Equipment Attached to the Top and Bottom Foundations for DDAM (상.하 받침대를 갖는 대형 함정 탑재장비의 DDAM 해석을 위한 유한요소 모델링 기법에 관한 연구)

  • Song, Oh-Seop;Kim, Yong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.4 s.121
    • /
    • pp.317-323
    • /
    • 2007
  • Non-contact underwater explosions against surface ships could cause extensive equipment damage and render the ship inoperative. As an analytical method, DDAM(dynamic design and analysis method) is used for ship shock design. In this paper, in order to verify the finite element model of large shipboard equipment, modal test of equipment was performed. Major objective of this paper is to describe shock analysis methodology for large shipboard equipment attacked to the top and bottom foundations.