• 제목/요약/키워드: Ship Vibration Analysis

검색결과 218건 처리시간 0.026초

선박용 엔진 MR 마운트의 최적설계: 최대 댐핑력 (Optimal Design of Magnetorheological Mount for Ship Engines : Maximum Damping Force)

  • 박준희;도쑤웬푸;구오흥;강옥현;최승복
    • 한국소음진동공학회논문집
    • /
    • 제23권5호
    • /
    • pp.472-478
    • /
    • 2013
  • This paper presents optimal design procedures of mount based on a magnetorheological(MR) fluid to isolate the vibration in heavy diesel engine system. At first, frequency response and force-displacement transmissibility methods are used to get required damping force that is necessary for effective vibration isolation. From this result, a new type of high damping force engine mount is proposed and the governing equation of Bingham plastic behavior of MR fluid in flow path is mathematically derived under cylindrical coordinates. Finally, parametric design optimization featuring finite element is performed using ANSYS software to get the required damping force in MR mount system which can be used to reduce engine vibration. Damping force of the MR mount is then determined as an objective function in this analysis based on ANSYS. Furthermore, Magnetic analysis is then applied in this process.

복수 평판으로 이루어진 접수 탱크 구조물의 진동 특성에 관한 연구 (A Study on Vibration Characteristics in Water Tank with Multi-panels)

  • 배성용
    • 동력기계공학회지
    • /
    • 제14권6호
    • /
    • pp.67-74
    • /
    • 2010
  • Many tanks are installed in ship and marine structures. They are often in contact with inner or outer fluid, like ballast, fuel and cargo tanks. Fatigue damages are sometimes observed in these tanks which seem to be caused by resonance with exciting force of engine and propeller. Vibration characteristics of these thin walled tanks in contact with fluid near engine and propeller are strongly affected by added mass of containing fluid. Therefore it is essentially important to estimate the added mass effect to predict vibration of the tanks. Many authors have studied vibration of cylindrical and rectangular tanks containing fluid. Few research on dynamic interaction among tank walls through fluid are reported in the vibration of rectangular tanks recently. In case of rectangular tanks, structural coupling between adjacent panels and effect of vibration modes of multiple panels on added mass have to be considered. In the previous report, A numerical tool of vibration analysis of a 3-dimensional tank is developed by using finite element method for plates and boundary element method for fluid region. In this paper, the coupling effect between panels of a tank on added mass of containing fluid, the effect of structural constraint between panels on each vibration mode for fluid region and mode characteristics in accordance with changing breadth of the plates are investigated numerically and discussed.

선체 부착 소음/진동 센서를 이용한 함정 추진기 캐비테이션 초생 분석 비교 연구 (A comparative study of cavitation inception of naval ship's propeller using on-board noise and vibration signals)

  • 정홍석;설한신
    • 한국음향학회지
    • /
    • 제42권3호
    • /
    • pp.243-249
    • /
    • 2023
  • 함정 추진기에서 발생하는 캐비테이션은 함의 생존성과 직결되어 있으며, 생존성 향상을 위해 추진기 캐비테이션 초생이 지연되는 추진기 형상을 요구하고 있다. 그러나 한번 함정이 건조되고 나면 다양한 운용 조건에서 캐비테이션이 발생할 수 있어, 설계 뿐만 아니라 운용 시에도 추진기 캐비테이션 발생 여부를 알 수 있어야 한다. 이를 위해 선내에서 계측한 신호를 이용한 캐비테이션 발생 여부 판단이 필요하다. 본 연구에서는 추진기 상방 선체에 하이드로폰과 가속도계를 설치하여 추진기에서 발생하는 음향/진동 신호의 상관관계와 각 센서를 이용한 캐비테이션 초생 분석 성능에 대해 비교를 수행하였다. 캐비테이션 발생을 시각적으로 파악하기 위하여 선미부에 관측창을 설치하여 고속카메라 계측을 수행하였다. 계측 결과 음향과 진동 신호 간 스펙트럼 형상은 다르게 나타났으나, 선속에 따른 밴드별 레벨 증가분, 1 kHz ~ 10 kHz 대역의 전체 레벨 등은 비슷한 경향을 나타냈다. Detction of Envelope Modulation On Noise(DEMON) 분석에서도 음향과 진동신호 모두 비슷한 결과를 보여주었으며, 이를 통해 추진기 캐비테이션 발생분석에는 하이드로폰과 가속도계 모두 활용할 수 있음을 확인하였다.

이중저 형상 구조물의 음향방사효율과 수중방사소음 해석 (Analysis of Acoustic Radiation Efficiency and Underwater Radiated Noise of Double Bottom-shaped Structure)

  • 최성원;김국현;조대승;서규열
    • 대한조선학회논문집
    • /
    • 제49권2호
    • /
    • pp.158-163
    • /
    • 2012
  • Recently, reducing underwater radiated noise (URN) of ships has become an environmental issue to protect marine wildlife. URN of ships can be predicted by various methods considering its generating mechanism and frequency ranges. For URN prediction due to ship structural vibration in low frequency range, the fluid-structure interaction analysis technique based on finite element and boundary element methods (FE/BEM) is regarded as an useful technique. In this paper, URN due to a double bottom-shaped structure vibration has been numerically investigated based on a coupled method of FE/BEM to enhance the prediction accuracy of URN due to the vibration of real ship engine room structure. Acoustic radiation efficiency and URN transfer function in case of vertical harmonic excitation on the top plate of double bottom structure have been evaluated. Using the results, the validity of an existing empirical formula for acoustic radiation efficiency estimation and a simple URN transfer function, which are usually adopted for URN assessment in initial design stage, is discussed.

4,500 TEU 컨테이너 운반선의 소음 제어 (Noise Control for 4,500 TED Container Carrier)

  • 김동해;임도형
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.1313-1316
    • /
    • 2001
  • Generally, container carrier has larger engine than other commercial vessels and the engine casing is located in accommodation space. Therefore, the noise levels of cabins and engine room could be exceeded the specified noise limits and might be an annoyance to crews, and which can result in poor ship quality. Main subject of this study is to predict noise levels of the 4,500 TED container carrier by statistical energy analysis method in order to comply with contracted noise limits and to compare with the measured values. Additionally, through the contribution analysis of noise sources to each cabins, and appropriate countermeasures are proposed and the reduction effect of each noise control measure is studied by the analysis method. This study will contribute to reduce the noise levels of similar vessel.

  • PDF

드릴쉽 디젤엔진 발전기의 진동에 관한 연구 (Study on the Vibration of Diesel Engine Generator of Drill Ship)

  • 진봉만;박형식;도천수;공영모;김노성
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.504-508
    • /
    • 2009
  • To obtain high power, diesel engines continuously increase combustion pressure and mean effective pressure each cylinder, and the excitation sources and noisy sources are increased, too. Moreover, to reduce the costs, shipyards make hull structures weaker than before. As above reasons, it is more difficult to control the vibration phenomenon nowadays. In this study, it was investigated why diesel generator sets reached the vibration allowable limits during the FAT and heavy vibration phenomenon of diesel generator sets using ODS test during onboard tests. Also, it is found out the stiffness of deck and common bed using the test result of their structural impedance. To find out the vibratory characteristics of diesel generator sets, MODAL tests were carried out. From the sensitivity analysis after above tests, it was selected points to be reinforced and studied troubleshooting to solve heavy vibration phenomenon of diesel generator sets.

  • PDF

접수탱크구조의 진동해석 (Vibration Analysis of a Water Tank Structures)

  • 배성용
    • 동력기계공학회지
    • /
    • 제9권4호
    • /
    • pp.65-70
    • /
    • 2005
  • A liquid storage rectangular tank structures are used in many fields of civil, mechanical and marine engineering. Especially, Ship structures have many tanks in contact with inner or outer fluid, like ballast, fuel and cargo tanks. Fatigue damages are sometimes observed in these tanks which seem to be caused by resonance with exciting force of engine and propeller. Vibration characteristics of these thin walled tanks in contact with fluid near engine propeller are strongly affected by added mass of containing fluid. Therefore it is essentially important to estimate the added mass effect to predict vibration of the tank structures. Many authors have studied vibration of cylindrical and rectangular tanks structures containing fluid. Few research on dynamic interaction among tank walls through fluid are reported in the vibration of rectangular tanks recently. In case of rectangular tanks, structural coupling between adjacent panels and effect of vibration modes of multiple panels on added mass have to be considered. In the present paper, coupling effect between panels of tank structure on added mass of containing fluid, the effect of structural constraint between panels on each vibration mode for fluid region have investigated numerically and experimentally.

  • PDF

충격하중에 의한 Jib Crane Post의 피로 수명 평가 (A Study on Fatigue Assessment of the Crane Post due to Vibration during the Emergency Stop)

  • 김극수;김노성
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 춘계학술대회 논문집
    • /
    • pp.633-637
    • /
    • 2011
  • 선박에 설치된 크레인은 일반적으로 기둥의 높이가 높고 상대적으로 가는 진동에 취약한 장비이다. 선박 크래인 운전중 비상사태가 발생하여 브레이크를 사용하면 갑작스러운 충격하중에 의해 크레인 포스트에 과도한 진동이 발생하기도 한다. 이러한 진동에 의한 크레인의 안전성을 평가하는 것이 본 연구의 목적이다. 본 연구에서는 크레인의 비상정지시 발생하는 충격력을 추정하고 이러한 충격력을 이용하여 크레인에서의 응답과 스트레스에 의한 피로수명을 예측하였다.

  • PDF

관통보와 평판의 연결 구조물에 대한 진동인텐시티 해석 (Vibration Intensity Analysis of Penetration Beam-plate Coupled Structures)

  • 홍석윤;강연식
    • 한국음향학회지
    • /
    • 제21권1호
    • /
    • pp.73-81
    • /
    • 2002
  • 본 논문에서는 중고주파영역에서의 진동해석기법인 파워흐름해석 법을 보와 평판이 연성된 구조물에 적용하기 위하여 무한보가 무한평판을 수직으로 투과하는 구조물에서의 파워투과반사계수를 파동전달법을 이용하여 구하였다. 이러한 파워투과반사계수를 실제 구조물에 적용하기 위해서는 파워흐름유한요소법으로의 활용이 필요하다. 이를 위해 본 논문에서는 파워투과반사계수를 이용하여 보 평판구조물을 위한 연결요소행렬식을 정립하였으며, 또한 보와 평판요소를 각각 해석할 수 있는 파워흐름유한요소해석 프로그램을 구성하고, 여기에 정립된 보와 평판간의 연결요소 행렬식을 대입하여 보와 평판이 연성된 구조물까지 해석이 가능한 프로그램으로 개발하였다. 이 프로그램을 이용하여 이상화한 선박의 선미부 구조물을 해석한 결과, 선박구조물에서 진동에너지분포를 구할 수 있었고, 진동 인텐시티를 통하여 구조물에서의 파워전달경로를 예측할 수 있었다.

원통형 배열 구조물의 접수진동 해석 (Vibration Analysis of Water-loaded Cylindrical Array Structures)

  • 신창주;홍진숙;정의봉;서희선
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권1호
    • /
    • pp.175-182
    • /
    • 2009
  • This paper summarizes a solution procedure for a large cylindrical structure mounted underneath a ship as a sonar. Vibration analysis of the water loaded structure is required to enhance the structural reliability as well as acoustic performance of the sonar. It is, however, often very difficult to solve such structures since they have many DOFs, considering the frequency of interest and the water-loading. The mode mapping method is proposed and verified to take into account the water-loading with the minimum DOF for the analysis. The cyclic symmetric method is then reviewed to show how the eigen properties of the full model can be obtained from the representative segment model. The solution procedure is finally proposed and applied successfully for a simplified water-loaded cylindrical array structure.