• 제목/요약/키워드: Ship Vibration Analysis

검색결과 218건 처리시간 0.026초

선박용 엔진 진동 분석 및 모니터링 시스템(EVAMOS) 개발에 관하여 (Development of Engine Vibration Analysis and Monitoring System(EVAMOS) for Marine Vessels)

  • 이돈출;주기세;남택근;김은석;김상환
    • 한국소음진동공학회논문집
    • /
    • 제19권2호
    • /
    • pp.155-161
    • /
    • 2009
  • Engine builders have separately developed and applied torsional, axial and structural vibration monitoring system on most marine engines. These systems displayed their results for engine or ship operation engineers and were not regularly stored at the hardware of computer. So, the history and trend of various engine and hull vibrations were not supported for preventive maintenance and to protect the failure of these activity or function. The integrated vibration or stress monitoring system(EVAMOS : engine vibration analysis and monitoring system) in marine diesel engine, its accessories and hull structure have been developed by the dynamics laboratory of Mokpo Maritime University during last 3 years. This paper introduces the design conception and ability of commercial software EVAMOS with field data on several actual tests.

선박용 감속기어-디젤엔진 연결축의 진동 피로파손 분석 (Analysis of the Vibration Fatigue for the Diesel Engine and Reduction Gear Connecting Shaft in a Ship)

  • 한형석;이경현;박성호;김청식
    • 한국소음진동공학회논문집
    • /
    • 제24권5호
    • /
    • pp.407-413
    • /
    • 2014
  • The diesel engine and reduction gear combination is one of the common propulsion system in a naval vessel. Since the diesel engine has torsional vibration caused by reciprocating motion of the mass and gas pressure force of the cylinder, high cycle torsional fatigue can be occurred. Therefore, ROK navy restricts the maximum stress of the propulsion shaft according to MIL G 17859D. In this paper, the root cause for the failure of the diesel engine and reduction gear connecting shaft occurred in typical naval vessel is investigated based on the measured bending and torsional moment according to MIL G 17859D procedure.

수중방사소음 저감을 위한 함정용 개스터빈 발전기의 순음 저감 분석 (Analysis of Reducing Tonal Noise of the Gas Turbine Generator in order to Reduce Underwater Radiated Noise of a Naval Vessel)

  • 한형석;최기용
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 추계학술대회 논문집
    • /
    • pp.155-162
    • /
    • 2009
  • Because the tonal sound of the underwater noise in a naval vessel can be identified from the sub-marine of the enemy, it should be reduced sufficiently. This kind of the noise usually comes from the structure-borne noise of the onboard machine and transfers to the sea through the hull of the ship. The vibration at the high frequency can be reduced sufficiently with damping material. In this paper, the damping coefficient of the steel plate with damping sheet is evaluated by experiment. Using these evaluated properties, the numerical analysis is performed in order to evaluate how much vibration of the generator can be reduced applying damping sheet on the encloser and base of it.

  • PDF

수중방사소음 저감을 위한 함정용 개스터빈 발전기의 순음 저감 분석 (Analysis of Reducing Tonal Noise of the Gas Turbine Generator in order to Reduce Underwater Radiated Noise of a Naval Vessel)

  • 한형석;최기용
    • 한국소음진동공학회논문집
    • /
    • 제19권12호
    • /
    • pp.1329-1337
    • /
    • 2009
  • Because the tonal sound of the underwater noise in a naval vessel can be identified from the sub-marine of the enemy, it should be reduced sufficiently. This kind of the noise usually comes from the structure-borne noise of the onboard machine and transfers to the sea through the hull of the ship. The vibration at the high frequency can be reduced sufficiently with damping material. In this paper, the damping coefficient of the steel plate with damping sheet is evaluated by experiment. Using these evaluated properties, the numerical analysis is performed in order to evaluate how much vibration of the generator can be reduced applying damping sheet on the encloser and base of it.

Numerical Simulation of Flow past Forced and Freely Vibrating Cylinder at Low Reynolds Number

  • Jung, Jae Hwan;Nam, Bo Woo;Jung, Dong-Ho
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제3권4호
    • /
    • pp.165-173
    • /
    • 2017
  • This study aims at validating simulations of the forced and freely vibrating cylinders at Reynolds number of approximately 500 in order to identify the capability of the CFD code, and to establish the analysis process of the vortex-induced vibration (VIV). The direct numerical and large eddy simulations were employed to resolve the various length scales of the vortices, and the morphing technique was used to consider a motion of the circular cylinder. For the forced vibration case, both in- and anti-phase VIV processes were observed regarding the frequency ratio. Namely, when the frequency ratio approaches to unity, the synchronization/lock-in process occurs, leading to substantial increases in drag and lift coefficients. This is strongly linked with the switch in timing of the vortex formation, and this physical tendency is consistent with that of Blackburn and Henderson (J. Fluid Mech., 1999, 385, 255-286) as well as force coefficients. For the free oscillation case, the mass and damping ratio of 50.8 and 0.0024 were considered based on the study of Blackburn et al. (J. Fluid Struct., 2000, 15, 481-488) to allow the direct comparison of simulation results. The simulation results for a peak amplitude of the cylinder and a shedding mode are reasonably comparable to that of Blackburn et al. (2000). Consequently, based on aforementioned results, it can be concluded that numerical methods were successfully validated and the calculation procedure was well established for VIV analysis with reasonable results.

모멘텀 슬래밍을 고려한 선체 운동 및 파랑하중 해석 (Numerical Analysis of Ship Motions and Wave Loads Including Momentum Slamming)

  • 황지희;박인규;구원철
    • 대한조선학회논문집
    • /
    • 제49권2호
    • /
    • pp.109-115
    • /
    • 2012
  • Slamming phenomenon may occur when a ship navigates a high sea region, where the response of ship can be expected as elastic behaviour and the resultant wave loads may increase. In this paper, numerical analysis of ship motions and wave loads including momentum slamming was performed using the strip theory with regular waves. In order to analyze the effect of slamming force on the global ship motions, time histories of each mode of displacement and forces were simulated by using Newmark-beta time integration scheme. The added mass and damping coefficients calculated by Lewis form method were compared with the results of given references. For verification of numerical results, the motion RAOs of a S175 containership were calculated as an example of application and time histories of respective displacement and vertical bending moment were compared with the results of ITTC workshop benchmark test.

선체구조의 고체음 전달해석 (An Analysis on Structureborne Noise Tranmission Loss of Ship Structure)

  • 강현주;김재승;김현실
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1991년도 춘계학술대회논문집; 한국해사기술연구소, 대전; 1 Jun. 1991
    • /
    • pp.31-39
    • /
    • 1991
  • When predicting shipboard noise levels, the accuracy depends largely on the value of the structureborne noise transmission loss. Although empirical formulars are frequently used because of their simplicities, researches on the analytical methods to estimate the transmission loss of structureborne noise such as wave guide theory and SEA has long been one of the major topics in shipboard acoustics to overcome the inherent limitations of empirical ones. This paper describes an application of SEA to predict the transmission loss of the structurebornenoise of a simple ship-like structural model consisted of 22 flat plates. The result shows that discrepancies between experimental and theoretical transmission losses are less than 3 dB.

  • PDF

선박의 냉수제조기용 인클로우져에 대한 음향 삽입 손실 분석 (Analysis of the Sound Insertion Loss of the Enclosure for the Chilled Water Plant in a Ship)

  • 한형석;장천익
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 추계학술대회논문집
    • /
    • pp.152-157
    • /
    • 2008
  • Enclosure is widely used for the sound insulation in a ship. But it is very difficult to estimate the sound insertion loss for the enclosure because the sound field between the enclosure and the machine is so complex. Therefore, it is usually estimated experimentally. In this research, sound insertion loss of the enclosure is estimated by theory assuming that the sound field in the enclosure is reverberation field. And the results from the theory are compared to those from the experiment.

  • PDF

FPSO Topside의 소음특성 파악 및 저감대책 (A Noise Characteristics and Countermeasures of FPSO Topside)

  • 김동해;김성훈;정건화
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계 학술대회논문집(수송기계편)
    • /
    • pp.73-76
    • /
    • 2005
  • Recently, the demand for the Floating, Production, Storage, and Offloading facility (FPSO) which has some economic and technical advantages, has increased in offshore oil production areas. FPSO vessel dose not have self-propulsion system, but has additional facilities for oil production and positioning system. Main noise sources such as gas turbines, compressors, and pumps, are located on top of the hull (Topside area). In general, the noise regulation for the offshore structure is severer than that of the cargo ship and acceptable noise limit of cabin is specified as 45 dB(A). This paper describes the noise characteristics and the countermeasures for FPSO Topside area through investigation of noise analysis and site measurement results. Proper countermeasures, considering the characteristics of sources and receiver spaces, were applied from the noise prediction and various measurement results. Finally, this ship was successfully delivered with excellent noise properties.

  • PDF

여객선 객실소음과 장비 받침대 임피던스에 관한 실험적 연구 (An Experimental Study on the Impedance of the Machinery Foundation and the Cabin Noise in Cruise Ship)

  • 김극수;김노성;이욱;곽동희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 추계학술대회 논문집
    • /
    • pp.513-518
    • /
    • 2011
  • In cruise ships, it is inevitable to arrange the cabins near by the noisy areas, such as ventilation fan, HVAC machinery and funnel casing etc. The noise is propagated to the cabins by way of mount, foundation and deck. The transmitted noise to cabin is affected by mount and foundation structure. It is well-known that most of the structure-borne noise can be reduced by the flexible mount. However, when the foundation of machinery is designed inappropriately, it can make noise problems in cabins. In this paper, the effect of foundation on noise reduction is studied through the numerical analysis and mock up test. The dynamic performance of foundation is investigated from the viewpoint of the impedance and noise reduction in cabin.

  • PDF