• Title/Summary/Keyword: Ship Hull

Search Result 1,258, Processing Time 0.029 seconds

A Study on Motion Response of Small Fishing Vessels According to Various Tonnage in Regular Waves (소형어선의 크기에 따른 규칙파 중 운동응답 특성에 관한 연구)

  • Im, Nam-Kyun;Lee, Sang-Min
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.6
    • /
    • pp.832-838
    • /
    • 2021
  • Recently, reports of marine accidents of small fishing vessels less than 10 tons have been increasing. In this study, the characteristics of the motion response in regular waves were analyzed using computations for these ships. Small vessels less than 10 tons are classified by size and used for marine accident investigations. Therefore, the motion response analysis was performed on three small fishing vessels of different sizes. In the case of the head sea, it was confirmed that as the speed of the vessel increased in the long wavelength region, the motion responses of heave and pitch became large. The motion response of the smallest 3-ton fishing vessel was greater than that of the other sizes of fishing vessels. The maximum value of the roll motion shifted to the long wavelength region as the speed gradually increased in the bow sea, regardless of the size of the ship. In all the three small fishing vessels, it was found that the roll motion was the greatest at 15 knots, the highest speed in both bow and beam seas. When sailing in the head sea and bow sea conditions, lowering the speed is one of the effective approaches to reduce the effects of the vertical and lateral plane motions. The roll motion caused by the beam wave showed a tendency to increase rapidly only at a specific wavelength regardless of the speed and the size of the vessel. It was confirmed that the roll motion was significantly reduced with forward speed in the stern wave compared to the bow wave. As there is a specific region where the maximum value of the hull motion response appears depending on the size and speed of the ship, an operation method that can minimize the effect of this motion should be considered and implemented.

A Comparative Study on Marine Transport Contract and Marine Insurance Contract with Reference to Unseaworthiness

  • Pak, Jee-Moon
    • Journal of Korea Trade
    • /
    • v.25 no.2
    • /
    • pp.152-177
    • /
    • 2021
  • Purpose - This study analyses the excepted requirement and burden of proof of the carrier due to unseaworthiness through comparison between the marine transport contract and marine insurance contract. Design/methodology - This study uses the legal analytical normative approach. The juridical approach involves reviewing and examining theories, concepts, legal doctrines and legislation that are related to the problems. In this study a literature analysis using academic literature and internet data is conducted. Findings - The burden of proof in case of seaworthiness should be based on presumed fault, not proved fault. The burden of proving unseaworthiness/seaworthiness should shift to the carrier, and should be exercised before seeking the protections of the law or carriage contract. In other words, the insurer cannot escape coverage for unfitness of a vessel which arises while the vessel is at sea, which the assured could not have prevented in the exercise of due diligence. The insurer bears the burden of proving unseaworthiness. The warranty of seaworthiness is implied in hull, but not protection and indemnity policies. The 2015 Act repeals ss. 33(3) and 34 of MIA 1906. Otherwise the provisions of the MIA 1906 remain in force, including the definition of a promissory warranty and the recognition of implied warranties. There is less clarity about the position when the source of the loss occurs before the breach of warranty but the actual loss is suffered after the breach. Nonetheless, by s.10(2) of the 2015 Act the insurer appears not to be liable for any loss occurring after the breach of warranty and before there has been a remedy. Originality/value - When unseaworthiness is identified after the sailing of the vessel, mere acceptance of the ship does not mean the party waives any claims for damages or the right to terminate the contract, provided that failure to comply with the contractual obligations is of critical importance. The burden of proof with regards to loss of damage to a cargo caused by unseaworthiness is regulated by the applicable law. For instance, under the common law, if the cargo claimant alleges that the loss or damage has been caused by unseaworthiness, then he has the burden of proof to establish the followings: (i) that the vessel was unseaworthy at the beginning of the voyage; and that, (ii) that the loss or damage has been caused by such unseaworthiness. In other words, if the warranty of seaworthiness at the inception of the voyage is breached, the breach voids the policy if the ship owner had prior knowledge of the unseaworthy condition. By contrast, knowingly permitting the vessel to break ground in an unseaworthy condition denies liability only for loss or damage proximately caused by the unseaworthiness. Such a breach does not, therefore, void the entire policy, but only serves to exonerate the insurer for loss or damage proximately caused by the unseaworthy condition.

Effect of Wind Speed Profile on Wind Loads of a Fishing Boat (풍속 분포곡선이 어선의 풍하중에 미치는 영향에 관한 연구)

  • Lee, Sang-Eui
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.7
    • /
    • pp.922-930
    • /
    • 2020
  • Marine accidents involving fishing boats, caused by a loss of stability, have been increasing over the last decade. One of the main reasons for these accidents is a sudden wind attacks. In this regard, the wind loads acting on the ship hull need to be estimated accurately for safety assessments of the motion and maneuverability of the ship. Therefore, this study aims to develop a computational model for the inlet boundary condition and to numerically estimate the wind load acting on a fishing boat. In particular, wind loads acting on a fishing boat at the wind speed profile boundary condition were compared with the numerical results obtained under uniform wind speed. The wind loads were estimated at intervals of 15° over the range of 0° to 180°, and i.e., a total of 13 cases. Furthermore, a numerical mesh model was developed based on the results of the mesh dependency test. The numerical analysis was performed using the RANS-based commercial solver STAR-CCM+ (ver. 13.06) with the k-ω turbulent model in the steady state. The wind loads for surge, sway, and heave motions were reduced by 39.5 %, 41.6 %, and 46.1 % and roll, pitch, and yaw motions were 48.2 %, 50.6 %, and 36.5 %, respectively, as compared with the values under uniform wind speed. It was confirmed that the developed inlet boundary condition describing the wind speed gradient with respect to height features higher accuracy than the boundary condition of uniform wind speed. The insights obtained in this study can be useful for the development of a numerical computation method for ships.

Standards for the Use of Tugboats owing to the Increase in the Size of Ships - Focusing on the Busan New Port - (선박 대형화에 따른 예선 사용 기준에 관한 연구 - 부산 신항을 중심으로 -)

  • Chang-Hyun Jung;Chol-Seong Kim;Yun-Sok Lee;Young-Soo Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.2
    • /
    • pp.157-164
    • /
    • 2024
  • In 2020, 24,000 TEU ultra-large container ships began arriving at the Busan New Port. In this study, the wind pressure and hydraulic force acting on the hull were calculated to obtain the horsepower required for the tugboats for safe berthing and unberthing of a 24,000 TEU ultra-large container ship at the Busan New Port. When the wind speed is 10 m/s (20 kts), 13,000 TEU container ships meet the tug horsepower standard of the current Busan port tugboat operation rules, but 16,000 TEU and 24,000 TEU container ships do not satisfy the regulations. Therefore, it was proposed to raise the standards for tugboat use by dividing the size of ships of "G/T 150,000 tons or more," which is the largest vessel under the current tugboat use standards, into two stages. Because 140,000 tons requires 12,100 horsepower, 170,000 tons requires 14,500 horsepower, and 230,000 tons requires 18,000 horsepower, the study proposed 16,000 horsepower for 150,000 to less than 200,000 tons and 18,000 horsepower for 200,000 tons or more for the use of tugboats.

A Study on the Initial Stability Evaluation of 4.99-Tons-Class Standard Fishing Vessels (4.99톤급 표준어선형 어선의 초기 복원성 평가에 관한 연구)

  • Hwewoo Kim;Sanghyun Kim;Sunwoo Lee;Hyeongseok Yoon;Hyogeun Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.2
    • /
    • pp.176-183
    • /
    • 2024
  • Assessing the stability of small fishing vessels is important to prevent capsize accidents in coastal waters that primarily occur on small fishing vessels. However, the regulations regarding stability assessment for small vessels under 24 m are inadequate according to the domestic Fisheries Act. Based on safety standards issued by the Ministry of Oceans and Fisheries in 2022 to enhance safety and welfare, vessels adhering to the enhanced safety standards for standard ship types are required to establish stability regardless of their length. This study aims to utilize these aforementioned standards to assess the stability of vessels under 24 m, investigating the suitability of applying these criteria to these vessels and examining the impact on various small vessels with different superstructures. Initially, a 4.99-ton fishing vessel designed according to the standard ship type was selected as the subject vessel. Compliance with the standards was evaluated based on the initial stability of the vessel using the transverse metacentric height (GM) and transverse restoring moment arm at the limit angle (GZα). Additionally, six types of small vessels with identical hull forms and specifications to the subject vessel were further examined using prevalent superstructure designs in small fishing vessels. The stability of the subject small vessel was also assessed. A study of a 4.99-ton standard fishing vessel confirmed that the safety standards for standard fishing vessels with enhanced safety welfare were applicable to small fishing vessels under 4.99-ton class and that the stability of small fishing vessels with superstructure modifications was not significantly changed.

A study for numerical simulation about grounding of 105k tanker (LS-DYNA3D를 이용한 좌초 선박 손상평가)

  • Han, Dae-Suk;Rim, Chae-Whan;Lee, Tak-Kee;Lee, Jae-Myung
    • Journal of Navigation and Port Research
    • /
    • v.31 no.3 s.119
    • /
    • pp.213-221
    • /
    • 2007
  • Recently, environmental design are becoming a matter of grave concern in shipbuilding. Out of these concern, oil spilt which is induced by grounding accidents is very critical reason of the ocean pollution. Therefore, a series qf quarter of 105k tanker model grounding simulations were conducted to analyze it's characteristics for the accident. ship get using LS-DYNA3D. In this paper, to conduct whole simulations, a meshsize convergence test was carried out to determine appropriate meshsize for grounding test. After the series analysis. These results were analyzed as each case.

Assessment of whipping and springing on a large container vessel

  • Barhoumi, Mondher;Storhaug, Gaute
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.442-458
    • /
    • 2014
  • Wave induced vibrations increase the fatigue and extreme loading, but this is normally neglected in design. The industry view on this is changing. Wave induced vibrations are often divided into springing and whipping, and their relative contribution to fatigue and extreme loading varies depending on ship design. When it comes to displacement vessels, the contribution from whipping on fatigue and extreme loading is particularly high for certain container vessels. A large modern design container vessel with high bow flare angle and high service speed has been considered. The container vessel was equipped with a hull monitoring system from a recognized supplier of HMON systems. The vessel has been operating between Asia and Europe for a few years and valuable data has been collected. Also model tests have been carried out of this vessel to investigate fatigue and extreme loading, but model tests are often limited to head seas. For the full scale measurements, the correlation between stress data and wind data has been investigated. The wave and vibration damage are shown versus heading and Beaufort strength to indicate general trends. The wind data has also been compared to North Atlantic design environment. Even though it has been shown that the encountered wind data has been much less severe than in North Atlantic, the extreme loading defined by IACS URS11 is significantly exceeded when whipping is included. If whipping may contribute to collapse, then proper seamanship may be useful in order to limit the extreme loading. The vibration damage is also observed to be high from head to beam seas, and even present in stern seas, but fatigue damage in general is low on this East Asia to Europe trade.

New Mount with Moving-Coil-Type Electromagnetic Actuator for Naval Shipboard Equipment (가동코일형 전자기식 작동기를 결합한 함정 탑재장비용 마운트 개발)

  • Shin, Y.H.;Moon, S.J.;Jung, W.J.;Jeon, J.J.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.10
    • /
    • pp.885-894
    • /
    • 2013
  • In this study, a new hybrid mount with a moving-coil-type electromagnetic actuator is developed to reduce the vibration transmitted from naval shipboard equipment to the ship hull structure. The detailed design of the hybrid mount is determined through several design stages with electromagnetic numerical analysis using Maxwell software. The hybrid mount, which combines a rubber mount with an electromagnetic actuator, has a fail-safe function for shock resistance. The mount is fabricated and tested using a universal testing machine to check the design specifications. Finally, control tests are carried out on the hybrid mount to confirm its performance and applicability.

Optimal depth for dipping sonar system using optimization algorithm (최적화 알고리즘을 적용한 디핑소나 최적심도 산출)

  • An, Sangkyum
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.6
    • /
    • pp.541-548
    • /
    • 2020
  • To overcome the disadvantage of hull mounted sonar, many countries operate dipping sonar system for helicopter. Although limited in performance, this system has the advantage of ensuring the survivability of the surface ship and improving the detection performance by adjusting the depth according to the ocean environment. In this paper, a method to calculate the optimal depth of the dipping sonar for helicopters is proposed by applying an optimization algorithm. In addition, in order to evaluate the performance of the sonar, the Sonar Performance Function (SPF) is defined to consider the ocean environment, the depth of the target and the depth of the dipping sonar. In order to reduce the calculation time, the optimal depth is calculated by applying Simulated Annealing (SA), one of the optimization algorithms. For the verification of accuracy, the optimal depth calculated by applying the optimization technique is compared with the calculation of the SPF. This paper also provides the results of calculation of optimal depth for ocean environment in the East sea.

Parametric Study for Helideck Design using Finite Element Analysis (헬리데크 설계를 위한 유한요소해석 기반 매개변수연구)

  • Park, Doo-Hwan;Park, Yong-Jun;Park, Joo-Sin;Kim, Jeong-Hyeon;Kweon, Byoung-Cheol;Lee, Jae-Myung
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.411-422
    • /
    • 2014
  • A helideck is a very valuable offshore structure for the take-off and landing of a helicopter. In order to design a helideck, the design parameters and various loads defined by the regulations related to the design of a helideck should be applied. In this study, a risk analysis was performed based on the helicopter accidents for seven years, and the frequency and possible reasons for accidents involving helidecks were investigated. In addition, a finite element analysis of a steel helideck mounted on the upper deck of a ship (shuttle tanker) was performed with the load that should be considered when designing a helideck. Based on the results, a parametric study of helideck was carried out by applying a variety of design parameters, and an improved helideck design was presented. This improved helideck reduced the steel used by up to 24% compared to the initial helideck design, and the results of a finite element analysis were analyzed and compared with those of the initial analysis.