• Title/Summary/Keyword: Ship CAD

Search Result 107, Processing Time 0.023 seconds

Development of A Cyber Education Contents for the Ship Outfitting Basic Design (선박 의장 기본 모델링을 위한 사이버 교육 컨텐츠 개발)

  • Kim, Mi-Sun;Park, Yong-Suk;Lee, Sangdon;Seo, Jae-Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.2
    • /
    • pp.241-253
    • /
    • 2013
  • A Shipbuilding design program used in the shipbuilding industry tends to be shifted from the TRIBON software to the AM(AVEVA MARINE) software these days. Many large domestic shipbuilding companies have been using the AM instead of the TRIBON. New design software requires education programs for the necessary personnel. However the education programs for the AM are largely based on offline education. They suffer from constraints in space and time, and from high costs. This paper describes a development of online contents for the AM software that are focused for cyber education. It covers the applied process and the organization of the contents. The details of the development decisions including the security issue for the contents are described also.

Effect of the Laser Beam Size on the Cure Properties of a Photopolymer in Stereolithography

  • Sim, Jae-Hyung;Lee, Eun-Dok;Kweon, Hyeog-Jun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.4
    • /
    • pp.50-55
    • /
    • 2007
  • Stereolithography (SLA) is a technique using a laser beam to cure a photopolymer liquid resin with three-dimensional computer-aided design (CAD) data, The accuracy of the prototype, the build time, and the cured properties of the resins are controlled by the SLA process parameters such as the size of the laser beam, scan velocity, hatch spacing, and layer thickness, In particular, the size of the laser beam is the most important parameter in SLA, This study investigated the curing properties of photopolymers as a function of the laser beam size, The cure width and depth were measured either on a single cure line or at a single cure layer for various hatch spacings and laser beam sizes, The cure depth ranged from 0.23 to 0.34 mm and was directly proportional to the beam radius, whereas the cure width ranged from 0.42 to 1.07 mm and was inversely proportional to the beam radius, The resulting surface roughness ranged from 1.12 to $2.23{\mu}m$ for a ratio of hatch spacing to beam radius in the range 0.5-2.0 at a beam radius of 0.17 mm and a scan velocity of 125 mm/sec.

Effect Analysis of Offshore Wind Farms on VHF band Communications (VHF 대역 통신에 대한 해상풍력 발전단지의 영향성 분석)

  • Oh, Seongwon;Park, Taeyong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.307-313
    • /
    • 2022
  • As the development of renewable energy expands internationally to cope with global warming and climate change, the share of wind power generation has been gradually increasing. Although wind farms can produce electric power for 24 h a day compared to solar power plants, Their interfere with the operation of nearby radars or communication equipment must be analyzed because large-scale wind power turbines are installed. This study analyzed whether a land radio station can receive sufficient signals when a ship sailing outside the offshore wind farm transmits distress signals on the VHF band. Based on the geographic information system digital map around the target area, wind turbine CAD model, and wind farm layout, the area of interest and wind farm were modeled to enable numerical analysis. Among the high frequency analysis techniques suitable for radio wave analysis in a wide area, a dedicated program applying physical optics (PO) and shooting and bouncing ray (SBR) techniques were used. Consequently, the land radio station could receive the electromagnetic field above the threshold of the VHF receiver when a ship outside the offshore wind farm transmitted a distress communication signal. When the line of sight between the ships and the land station are completely blocked, the strength of the received field decreases, but it is still above the threshold. Hence, although a wind farm is a huge complex, a land station can receive the electromagnetic field from the ship's VHF transmitter because the wave length of the VHF band is sufficiently long to have effects such as diffraction or reflection.

A Study on Matching Method of Hull Blocks Based on Point Clouds for Error Prediction (선박 블록 정합을 위한 포인트 클라우드 기반의 오차예측 방법에 대한 연구)

  • Li, Runqi;Lee, Kyung-Ho;Lee, Jung-Min;Nam, Byeong-Wook;Kim, Dae-Seok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.2
    • /
    • pp.123-130
    • /
    • 2016
  • With the development of fast construction mode in shipbuilding market, the demand on accuracy management of hull is becoming higher and higher in shipbuilding industry. In order to enhance production efficiency and reduce manufacturing cycle time in shipbuilding industry, it is important for shipyards to have the accuracy of ship components evaluated efficiently during the whole manufacturing cycle time. In accurate shipbuilding process, block accuracy is the key part, which has significant meaning in shortening the period of shipbuilding process, decreasing cost and improving the quality of ship. The key of block accuracy control is to create a integrate block accuracy controlling system, which makes great sense in implementing comprehensive accuracy controlling, increasing block accuracy, standardization of proceeding of accuracy controlling, realizing "zero-defect transferring" and advancing non-allowance shipbuilding. Generally, managers of accuracy control measure the vital points at section surface of block by using the heavy total station, which is inconvenient and time-consuming for measurement of vital points. In this paper, a new measurement method based on point clouds technique has been proposed. This method is to measure the 3D coordinates values of vital points at section surface of block by using 3D scanner, and then compare the measured point with design point based on ICP algorithm which has an allowable error check process that makes sure that whether or not the error between design point and measured point is within the margin of error.

Performance Review of a Cycloid Speed Reducer for Ship Transport Vehicles using FEM (유한요소해석을 이용한 선박수송차량용 사이클로이드 감속기의 성능 검토)

  • Kang, Hyung-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.5
    • /
    • pp.2061-2066
    • /
    • 2011
  • A cycloid speed reducer is one of the rotational speed regulation devices of the machinery. A cycloid speed reducer has an advantage of transmitting high torque, but is known to be unsuitable for high speed rotation. However, it is almost impossible in an analytical method to find a use limit speed when installing such a speed reducer in a 200ton loading transporter. In this research the cycloid reducer was simulated to get its performance depending on friction energy loss in time domain by using by LS-DYNA. The maximum torque of the cycloid speed reducer is 3.5ton-m, so the comparison of analysis results between a case of 60rpm rotation and a case of 162rpm rotation with such a torque showed the following results. In the case of 60rpm rotation, the maximum stress appearing in the RV gear and the pin gear was 463MPa and 507MPa. Lost power due to friction was 50kW; In the case of 162rpm rotation, the maximum stress appearing in the RV gear and the pin gear was 550MPa and 538MPa. Lost power due to friction was 175kW, which was shown to be almost impossible to use.

A Study on Knowledge Based-AR System for Pipe Maintenance Support in Offshore Structure (해양구조물에서의 파이프정비 지원을 위한 지식기반형 증강현실 시스템에 관한 연구)

  • Kim, Chung-Hyun;Lee, Kyung-Ho;Lee, Jung-Min;Kim, Dea-Seok;Han, Eun-Jung
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.178-184
    • /
    • 2010
  • Today, there has been a decrease in international shipping because of the weakening in global economies. Therefore, shipowners are thinking more about Floating Production Storage and Offloading (FPSO), which can perform functions related to the transporting, storage, and tracking of crude oil from oil wells. Given the huge expense of these special ships, shipowners require workers who can solve problems quickly and secure sustainable production functions in this age of globalization. Furthermore, it is important to design, construct, and maintain facilities so that a ship remains in operation over a long term. This paper discusses a system that uses knowledge-based AR to help workers improve their understanding and deal with pipeline equipment problems safely. In addition, it displays a 3CAD model and status information for products to improve their recognition on the FPSO that they intend to inspect. At the same time, the system works quickly and offers solutions for dangerous circumstances or malfunctions. It thus helps to maintain the functionality of the FPSO throughout its life-cycle.

Manufacturing Information Calculation System for Production Automation of 3-dimensional Template Used to Evaluate Shell Plate Completeness (선체 곡판 완성도 평가용 3차원 곡형의 제작 자동화를 위한 생산 정보 산출 시스템)

  • Ryu, Cheolho;Son, Seunghyeok;Shen, Huiqiang;Kim, Youngmin;Kim, Byeongseop;Jung, ChangHwan;Hwang, InHyuck;Shin, Jong-Gye
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.2
    • /
    • pp.136-143
    • /
    • 2018
  • 3-D templates are produced to evaluate completeness of the shell plates during the forming process, which is an essential step for the ship production. They are mostly produced in advance during the detail/production design stage, but occasionally they are requested by the shell plate forming department, because it is impossible to predict accurately the necessities of them at the design stage. This results in a huge loss of man-hour and a bottleneck. In order to resolve this issue while reducing the dependence on other department, the process of manufacturing the 3-D templates needs to be automated. Therefore, this study proposes an automatic system that calculates the manufacturing information of the 3-D templates with only geometric information of the shell plates. The system considers the thickness and the cutting method of the parts of the 3-D templates and some options are provided to reflect the intention of the worker.