• Title/Summary/Keyword: Shifting factor

Search Result 94, Processing Time 0.033 seconds

Analysis of Stress Distribution around a Central Crack Tip in a Tensile Plate Using Phase-Shifting Photoelasticity and a Power Series Stress Function (위상이동 광탄성법과 멱급수형 응력함수를 이용한 인장시편 중앙 균열선단 주위 응력장 해석)

  • Baek, Tae-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.1
    • /
    • pp.1-9
    • /
    • 2009
  • This paper presents stress distribution around a central crack tip in a tensile plate using phase-shifting photoelasticity and a power series stress function. Isochromatic data along the straight lines far from the crack tip were obtained by phase shifting photoelasticity and were used as input data of the hybrid experimental analysis. By using the complex-type power series stress equations, the photoelastic stress distribution fields in the vicinity of the crack and the mode I stress intensity factor were obtained. With the help of image processing software, accuracy and reliability was enhanced by twice multiplying and sharpening the measured isochromatics. Actual and reconstructed fringes were compared qualitatively. For quantitative comparison, percentage errors and standard deviations of the percentage errors were calculated for all measured input data by varying the number of terms in the stress function. The experimental results agreed with those predicted by finite element analysis and empirical equation within 2 percent error.

Fringe-Order Determination Method in White-Light Phase-Shifting Interferometry for the Compensation of the Phase Delay and the Suppression of Excessive Phase Unwrapping

  • Kim, SeongRyong;Kim, JungHwan;Pahk, HeuiJae
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.5
    • /
    • pp.415-422
    • /
    • 2013
  • White-light phase-shifting interferometry (WLPSI) is widely recognized as a standard method to measure shapes with high resolution over a long distance. In practical applications, WLPSI, however, is associated with some degree of ambiguity of its phase, which occurs due to a phase delay, which is the offset between the phase of the fringes and the fringe envelope peak position. In this paper, a new algorithm is proposed for the determination of a fringe order suitable for samples in which the phase delay mainly occurs due to noise, diffraction and a steep angle. The concepts of the decouple factor and the connectivity are introduced and a method for calculating the decouple factor and the connectivity is developed. With the phase-unwrapping procedure which considers these values, it is demonstrated that our algorithm determines the correct fringe order. To verify the performance of the algorithm, a simulation was performed with the virtual step height under noise. Some specimens such as step height standard and a column spacer with a steep angle are also measured with a Mirau interference microscope, after which the algorithm is shown to be effective and robust.

Proposal for Optical One-time Password Authentication Using Digital Holography

  • Jeon, Seok Hee;Gil, Sang Keun
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.722-732
    • /
    • 2016
  • A new optical one-time password (OTP) authentication method using digital holography is proposed, which enhances security strength in the authentication system. A challenge-response optical OTP algorithm based on two-factor authentication is presented using two-step phase-shifting digital holography, and two-way authentication is also performed using challenge-response handshake in both directions. Identification (ID), password (PW), and OTP are encrypted with a shared key by applying phase-shifting digital holography, and these encrypted pieces of information are verified by each party by means of the shared key. The encrypted digital holograms are obtained by Fourier-transform holography and are recorded on a CCD with 256 quantized gray-level intensities. Because the intensity pattern of such an encrypted digital hologram is distributed randomly, it guards against a replay attack and results in higher security level. The proposed method has advantages, in that it does not require a time-synchronized OTP, and can be applied to various authentication applications. Computer experiments show that the proposed method is feasible for high-security OTP authentication.

A Comparison of the Dielectric Behavior of Aromatic and Aliphatic Polyurethanes in Relation to Transitional Phenomena

  • Kim, Chy Hyung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.4
    • /
    • pp.211-216
    • /
    • 2017
  • The dielectric properties of two polyurethanes (PUs) with different hard segments, i.e., aromatic methylene di-p-phenyl diisocyanate (MDI) and aliphatic hexamethylene diisocyanate (HDI), were investigated in the temperature range of -100 to $100^{\circ}C$ and in the frequency range of 1 Hz to 3 kHz. The ${\alpha}$-relaxations induced by the glass transition of the equivalent soft segments in the two PUs occurred at relaxation times of ${\tau}=3.46{\times}10^{-3}s$ for MDI-PU and ${\tau}=3.39{\times}10^{-2}s$ for HDI-PU at $-20^{\circ}C$, in accord with the temperature-frequency superposition principle, resulting in similar shifting factors. However, different I-relaxations were observed for the two PUs. The I-relaxation of MDI-PU occurred due to the mobility of the chain extenders near $80^{\circ}C$ with a slower shifting rate than the ${\alpha}$-relaxation. On the other hand, I-relaxation arising from both the extender and the unconstrained hard segments of HDI-PU occurred at $70{\sim}100^{\circ}C$, indicating complicated dielectric behavior due to partial interaction with the ${\alpha}$-relaxation at high frequencies. Thus, the I-relaxation of HDI-PU did not follow the superposition principle. The dielectric behaviors of the PUs were mainly influenced by their phase transitions, which were affected by the structure and components of the materials.

궤도차량용 자동변속기의 변속조향동특성 해석

  • 송창섭
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.03a
    • /
    • pp.67-71
    • /
    • 1996
  • The dynamic equation is built by the mathematical modelling. The modelling is composed of various components used for the automatic transmission of tracked vehicles. When the transmission is shifting, the shock occurs in the drivetrain. The transient torques affect the durability and reliability of the vehicle. The factor and design point are analyzed for the transmission.

  • PDF

Automatic Contrast Enhancement by Transfer Function Modification

  • Bae, Tae Wuk;Ahn, Sang Ho;Altunbasak, Yucel
    • ETRI Journal
    • /
    • v.39 no.1
    • /
    • pp.76-86
    • /
    • 2017
  • In this study, we propose an automatic contrast enhancement method based on transfer function modification (TFM) by histogram equalization. Previous histogram-based global contrast enhancement techniques employ histogram modification, whereas we propose a direct TFM technique that considers the mean brightness of an image during contrast enhancement. The mean point shifting method using a transfer function is proposed to preserve the mean brightness of an image. In addition, the linearization of transfer function technique, which has a histogram flattening effect, is designed to reduce visual artifacts. An attenuation factor is automatically determined using the maximum value of the probability density function in an image to control its rate of contrast. A new quantitative measurement method called sparsity of a histogram is proposed to obtain a better objective comparison relative to previous global contrast enhancement methods. According to our experimental results, we demonstrated the performance of our proposed method based on generalized measures and the newly proposed measurement.

3-D Profilometry by Phase Shifting Profilometry (위상이동법을 이용한 3차원 형상측정법의 연구)

  • 오동석;남기봉
    • Korean Journal of Optics and Photonics
    • /
    • v.5 no.2
    • /
    • pp.191-197
    • /
    • 1994
  • We investigated the properties of various methods of 3 dimensional profilometry to choose the phase shifting technique for the reconstruction of the shape of a given specimen. The pattern was generated by a Twyman-Green interferometer and a PZT was used to shift the fringes on the target surface. The shape was calculated with Hariharan algorithm within the uncertainty of a scaling factor. The optical noise inherent in the laser source was observed to influence the final outcome to a great extent and the need for an exact calibration was noted. noted.

  • PDF

A Comparative Analysis of X-factor Stretch between Driver and Iron Swing in Male Professional Golfers (남자 프로골퍼의 드라이버와 아이언 스윙 시 X-factor Stretch에 관한 비교 분석)

  • Park, Tae-Jin;Seo, Kook-Eun
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.4
    • /
    • pp.487-495
    • /
    • 2010
  • The purpose of this study was conducted to make a comparative biomechanical analysis of X-factor and X-factor stretch during driver and iron swing. The subjects were composed of 10 professional golfers with more than 10 years career. The result was as follows: First, the analysis of the back swing with driver and iron swing showed no differences statistically between both the timing in horizontal rotating of shoulder and hip, the time required for X-factor stretch also showed no differences statistically. Second, the back swing with a driver swing showed more maximum horizontal rotation of shoulder and hip joint than the back swing with an iron swing, but the twist of shoulder and hip that was X-factor stretch angle showed no difference. Third, the GRF of the max value for the left and right foot during shoulder and hip horizontal rotation of back swing showed no differences statistically in the movement of driver and iron swing during the back swing, and the GRF of X-factor stretch for the left and right foot showed no differences statistically in driver and iron swing. Therefore the result of this research showed that the operation of torso(X-factor stretch) and weight shifting were similar although the horizontal rotation of body was different during the driver and iron swing.