DOI QR코드

DOI QR Code

Proposal for Optical One-time Password Authentication Using Digital Holography

  • Jeon, Seok Hee (Department of Electronic Engineering, Incheon National University) ;
  • Gil, Sang Keun (Department of Electronic Engineering, The University of Suwon)
  • Received : 2016.08.12
  • Accepted : 2016.10.10
  • Published : 2016.12.25

Abstract

A new optical one-time password (OTP) authentication method using digital holography is proposed, which enhances security strength in the authentication system. A challenge-response optical OTP algorithm based on two-factor authentication is presented using two-step phase-shifting digital holography, and two-way authentication is also performed using challenge-response handshake in both directions. Identification (ID), password (PW), and OTP are encrypted with a shared key by applying phase-shifting digital holography, and these encrypted pieces of information are verified by each party by means of the shared key. The encrypted digital holograms are obtained by Fourier-transform holography and are recorded on a CCD with 256 quantized gray-level intensities. Because the intensity pattern of such an encrypted digital hologram is distributed randomly, it guards against a replay attack and results in higher security level. The proposed method has advantages, in that it does not require a time-synchronized OTP, and can be applied to various authentication applications. Computer experiments show that the proposed method is feasible for high-security OTP authentication.

Keywords

References

  1. D. McDonald, R. Atkinson, and Craig Mets, "One-time passwords in everything (OPIE): Experiences with building and using stronger authentication," in Proc. the 5th USENIX Security Symposium (Salt Lake City, Utah, USA, Jun. 1995), vol. 5 pp. 16-16.
  2. B. Schneider, "Two-factor authentication: too little, too late," ACM Commun. 48, 136 (2005).
  3. B. Javidi and J. L. Horner, "Optical pattern recognition for validation and security verification," Opt. Eng. 33, 1752-1756 (1994). https://doi.org/10.1117/12.170736
  4. J. F. Heanue, M. C. Bashaw, and L. Hesselink, "Encrypted holographic data storage based on orthogonal-phase-code multiplexing," Appl. Opt. 34, 6012-6015 (1995). https://doi.org/10.1364/AO.34.006012
  5. P. Refregier and B. Javidi, "Optical image encryption based on input plane and Fourier plane random encoding," Opt. Lett. 20, 767-769 (1995). https://doi.org/10.1364/OL.20.000767
  6. B. Javidi, A. Sergent, and E. Ahouzi, "Performance of double phase encoding encryption technique using binarized encrypted images," Opt. Eng. 37, 565-569 (1998). https://doi.org/10.1117/1.601645
  7. D. Weber and J. Trolinger, "Novel implementation of nonlinear joint transform correlators in optical security and validation," Opt. Eng. 38, 62-68 (1999). https://doi.org/10.1117/1.602062
  8. G. Unnikrishnan and K. Singh, "Double random fractional Fourier domain encoding for optical security," Opt. Eng. 39, 2853-2859 (2000). https://doi.org/10.1117/1.1313498
  9. G-S. Lin, H. T. Chang, W.-N. Lie, and C.-H. Chuang, "Public-key-based optical image cryptosystem based on data embedding techniques," Opt. Eng. 42, 2331-2339 (2003). https://doi.org/10.1117/1.1588660
  10. R. Arizaga and R. Torroba, "Validation through a binary key code and a polarization sensitive digital technique," Opt. Comm. 215, 31-36 (2003). https://doi.org/10.1016/S0030-4018(02)02189-2
  11. B. Javidi and T. Nomura, "Securing information by means of digital holography," Opt. Lett. 25, 28-30 (2000). https://doi.org/10.1364/OL.25.000028
  12. T. Nomura, A. Okazaki, M. Kameda, and Y. Morimoto, "Image reconstruction from compressed encrypted digital hologram," Opt. Eng. 44, 2313-2320 (2005).
  13. P. Hariharan, "Digital phase-shifting interferometry: a simple error compensating phase calculation algorithm," Appl. Opt. 26, 2504-0505 (1987). https://doi.org/10.1364/AO.26.002504
  14. I. Yamaguchi and T. Zhang, "Phase-shifting digital holography," Opt. Lett. 22, 610-612 (1998).
  15. J.-P. Liu, T.-C. Poon, G.-S. Jhou, and P.-J. Chen, "Comparison of two-, three, and four-exposure guadrature phase-shifting holography," Appl. Opt. 50, 2443-2450 (2011). https://doi.org/10.1364/AO.50.002443
  16. S. K. Gil, S. H. Jeon, N. Kim, and J. R. Jeong, "Successive encryption and transmission with phase-shifting digital holography," Proc. SPIE 6136, 339-346 (2006).
  17. S. K. Gil, H. J. Byun, H. J. Lee, S. H. Jeon, and J. R. Jeong, "Optical encryption of binary data information with 2-step phase-shifting digital holography," Proc. SPIE 6488, 648812 (2007).
  18. S. H. Jeon, Y. G. Hwang, and S. K. Gil, "Optical encryption of gray-level image using on-axis and 2-f digital holography with two-step phase-shifting method," Opt. Rev. 15, 181-186 (2008). https://doi.org/10.1007/s10043-008-0029-5
  19. S. H. Jeon and S. K. Gil, "QPSK modulation based optical image cryptosystem using phase-shifting digital holography," J. Opt. Soc. Korea 14, 97-103 (2010). https://doi.org/10.3807/JOSK.2010.14.2.097
  20. S. H. Jeon and S. K. Gil, "2-step phase-shifting digital holographic optical encryption and error analysis," J. Opt. Soc. Korea 15, 244-251 (2011). https://doi.org/10.3807/JOSK.2011.15.3.244
  21. S. K. Gil, "2-step quadrature phase-shifting digital holographic optical encryption using orthogonal polarization and error analysis," J. Opt. Soc. Korea 16, 354-364 (2012). https://doi.org/10.3807/JOSK.2012.16.4.354
  22. S. K. Gil, S. H. Jeon, and J. R. Jeong, "Security enhanced optical one-time password authentication method by using digital holography," Proc. SPIE 9386, 93860U (2015).

Cited by

  1. Multiple-3D-object decryption based on one interference using two phase-only functions vol.56, pp.22, 2017, https://doi.org/10.1364/AO.56.006214