• Title/Summary/Keyword: Shielding Rate

Search Result 270, Processing Time 0.027 seconds

Impacts of sintering temperature on the mechanical properties and gamma ray protection capacity of clay bricks

  • Aljawhara H. Almuqrin;K.A. Mahmoud;M.I. Sayyed;H. Al-Ghamdi
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2489-2497
    • /
    • 2024
  • The current study aims to develop new clay bricks doped with metallic waste for radiation shielding applications. The aforementioned new bricks were fabricated with various metallic waste concentrations under a pressure rate reaching ≈114 MPa and firing temperature of 1100 ℃. The impacts of the metallic waste and the firing temperature on the developed brick samples' physical, radiation shielding, and structural properties were studied. In order to identify the fabricated bricks' mineral content, the X-ray diffraction pattern was used. Additionally, the fabricated bricks' porosity and density were experimentally determined, where the porosity was reduced by 28.03%, while their densities increased by ≈ 10.5% by raising the concentration of metallic waste. The linear attenuation coefficient (LAC) for the developed brick was investigated experimentally using a NaI (Tl) scintillation detector over the 0.033-1.408 MeV energy interval. The measured LAC values were enhanced by increasing the concentrations of metallic waste within the fabricated bricks over the examined energy interval. The fabricated brick's LAC enhancement improves the gamma-ray shielding characteristics. Therefore, the fabricated bricks are a cheap and suitable choice for radiation protection applications.

Optimization of GTAW Parameters for Horizontal Welding of a STS316L Pipe (STS316L 강관의 수평자세 용접을 위한 GTAW 용접조건의 최적화)

  • Lee, Hyoung-Keun;Bang, Kyoung-Sik
    • Journal of Welding and Joining
    • /
    • v.33 no.5
    • /
    • pp.47-52
    • /
    • 2015
  • In this study, it was tried to analyze the effects of welding parameters on the weld penetration and aspect ratio when a STS316L pipe was welded in a horizontal position by GTAW. Experiments were systematically designed using a L18 orthogonal array, and the effects of welding parameters were statistically analyzed by ANOVA(Analysis of Variance). The shielding gas type has the largest effect on both the penetration and aspect ratio. The welding current type and shielding gas flow rate have a little effect on the penetration, whereas the electrode tip angle has a little effect on the aspect ratio. When welded at a selected welding condition, which is composed of He shielding gas, pulse current of 300/45 A, electrode tip angle of 90o, and shielding gas flow rate of 30 l/min, the estimated interval at least 95 % confidence was $1.99{\pm}0.18mm$ for the penetration and $0.31{\pm}0.04$ for the aspect ratio. From the confirmation experiments, the average penetration and aspect ratio were well agreed with the estimation as 1.96 mm and 0.30, respectively. Additionally, the effects of the welding speed and welding current on the penetration and aspect ratio were experimented and analyzed by linear regression. The penetration was linearly increased with the decrease of the welding speed and with the increase of the welding current, but the aspect ratio showed a tendency to a little decrease with the increase of both the welding speed and current.

Shield Ratio and Thrust Performance Analysis According to The S-Type Nozzle of The Centerline Shape (S-형 노즐 형상의 중심선 형태에 따른 차폐율과 추력 성능 해석)

  • Jin, Juneyub;Park, Youngseok;Kim, Jaewon;Lee, Changwook
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.3
    • /
    • pp.42-55
    • /
    • 2021
  • In this study, the effect of nozzle performance according to the selection of the center line equation. Three of S-type nozzles and three of double S-type nozzles were designed using the curve equation and design parameters, and the nozzle shielding performance was evaluated using the shielding ratio definition. In order to analyze the internal flow of the nozzle, the characteristics of the velocity distribution and pressure distribution were studied, and the nozzle performance was evaluated through the total thrust ratio(f) and the nozzle insulation efficiency coefficient(η). On the other hand, the centerline with a sharply change in curvature at the entrance has a low nozzle performance and a high shielding rate. The double S-type nozzle is excellent nozzle performance and shielding rate by using a smooth centerline at the first curvature.

Verification of the Protective Effect of Functional Shielding Cream for the Prevention of X-ray Low-dose Exposure (X-ray 저선량 피폭방지를 위한 기능성 차폐크림의 방어 효과 검증)

  • Seon-Chil Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.4
    • /
    • pp.497-506
    • /
    • 2023
  • In the case of radiation workers in medical institutions, radiation exposure is made for patient protection and accurate procedures, so they have a problem of low dose exposure. Low-dose radiation exposure occurs mainly in parts of the body other than the Apron area, and the most frequent place is the skin of the back of the hand. In particular, since the medical personnel's hands require senses and fine movements during the procedure, they are defenseless in the radiation exposure area and are at risk of exposure. It can solve the problem of shielding such as lead gloves, and it is difficult to use by suggesting the activity of the hand during the procedure. To solve this problem, a shielding cream capable of obtaining a functional radiation protection effect was developed and its shielding performance was compared with lead equivalent of 0.1 mmPb. In the process of manufacturing shielding cream, the shielding performance was improved by adding a defoaming process to reduce air holes to increase the density of the cream. Therefore, the shielding cream using barium sulfate as the main material has a lower shielding rate than the lead plate, and in the realm of effective energy, it is 59%, At high effective energy, a difference of about 37% was shown, indicating that there is a functional radiation protection effect. The advantage is that it can be used directly on the skin, and it is considered that it can be used before wearing surgical gloves and has a permanent protective effect.

Research on Radiation Shielding Film for Replacement of Lead(Pb) through Roll-to-Roll Sputtering Deposition (롤투롤 스퍼터링 증착을 통한 납(Pb) 대체용 방사선 차폐필름 개발)

  • Sung-Hun Kim;Jung-Sup Byun;Young-Bin Ji
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.3
    • /
    • pp.441-447
    • /
    • 2023
  • Lead(Pb), which is currently mainly used for shielding purposes in the medical radiation, has excellent radiation shielding functions, but is continuously exposed to radiation directly or indirectly due to the harmfulness of lead itself to the human body and the inconvenience caused by its heavy weight. Research on shielding materials that are human-friendly, lightweight, and convenient to use that can block risks and replace lead is continuously being conducted. In this study, based on the commonly used polyethylene terephthalate (PET) film and the fabric material used in actual radiation protective clothing, a multi-layer thin film was realized through sputtering and vacuum deposition of bismuth, tungsten, and tin, which are metal materials that can shield radiation. Thus, a shielding film was produced and its applicability as a radiation shielding material was evaluated. The radiation shielding film was manufactured by establishing the optimized conditions for each shielding material while controlling the applied voltage, roll driving speed, and gas supply amount to manufacture the shielding film. The adhesion between the parent material and the shielding metal thin film was confirmed by Cross-cut 100/100, and the stability of the thin film was confirmed through a hot water test for 1 hour to measure the change of the thin film over time. The shielding performance of the finally realized shielding film was measured by the Korea association for radiation application (KARA), and the test conditions (inverse wide beam, tube voltage 50 kV, half layer 1.828 mmAl) were set to obtain an attenuation ratio of 16.4 (initial value 0.300 mGy/s, measured value 0.018 mGy/s) and damping ratio 4.31 (initial value 0.300 mGy/s, measured value 0.069 mGy/s) were obtained. by securing process efficiency for future commercialization, light and shielding films and fabrics were used to lay the foundation for the application of films to radiation protective clothing or construction materials with shielding functions.

A Experimental Study on Attenuation Rate of Construction Materials in the Diagnostic X-ray Energy (진단 영역의 X-선 에너지에서 각종 건축재료의 감약율 측정실험)

  • Kim, Jung-Min;Jung, Hoi-Won
    • Journal of radiological science and technology
    • /
    • v.21 no.2
    • /
    • pp.11-18
    • /
    • 1998
  • Single phase, narrow beam X-ray attenuation data were obtained using various construction materials concrete, white block, red block, 3 hole block, gypsum board, artificial marble, cement, plate glass, wood, and lead. Tube voltages of 60, 80, 100, 120 kVp were employed and the resulting curves were compared to transmission data found in this report. The shielding methodology and the derivation of equations used for determination of barrier requirements were presented in NCRP 49. We could calculate the X-ray exposed dose after attenuation and thickness of protection barrier in the clinic facilities accordingly. For the purpose of maximizing the benefit/cost ratio to diagnostic shielding, various construction materials must be installed carefully and attnuation rate considered thoroughly.

  • PDF

Effect of Shielding gas Composition on Arc Stability and Transfer mode of High deposition GMA Welding (고용착 GMA 용접의 Arc 안정성 및 용적이행 현상에 미치는 보호gas의 영향)

  • 경규담;천홍정;이정헌;강봉용;김희진
    • Journal of Welding and Joining
    • /
    • v.15 no.1
    • /
    • pp.109-115
    • /
    • 1997
  • The arc stability and the metal transfer mode of high deposition GMA welding were investigated using various compositions of shielding gas with two types of filler, ie solid wire and metal cored wire. As for a solid wire, the transfer mode changed from axial spray to rotational spray with increasing wire feed rate (welding current) and the transition current was different with the gas composition. The gas composition also affected the apparent stability of rotating arc. As for a metal cored wire, on the other hand, no transition occurred and thus spray transfer mode could be applied with the welding current over 500A (deposition rate over 300g/min). Looking for the development of high deposition GMA welding process, above results were discussed in two different ways, one is to elevate the transition current, the other is to stabilize the rotational transfer mode.

  • PDF

Effects of the Welding Parameters on the Weld Shape in Nd:YAG Laser Welding of STS 304L (STS 304L의 Nd:YAG 레이저 용접에서 용접조건이 용접부 형상에 미치는 영향)

  • 이형근;석한길;한현수;박울재;홍순복
    • Journal of Welding and Joining
    • /
    • v.22 no.1
    • /
    • pp.58-64
    • /
    • 2004
  • The control of the weld bead shape is important in laser welding of the small parts. The effects of laser welding parameters on the weld bead shape in the pulsed Nd:YAG laser welding of STS 304L material were investigated. Shielding gas type, flow rate, pumping voltage, pulse frequency, pulse width, focal position and overlap distance were selected as laser welding parameters. Experiments were designed and conducted using the Taguchi method which was a statistical experimental method. The weld bead width, penetration, area and aspect ratio were measured and analysed as the weld bead shape properties and the welding parameters were optimized to maximize the weld aspect ratio. Weld aspect ratio were greatly affected by the pulse width, pumping voltage and pulse frequency, and somewhat by the overlap distance, and little by the shielding gas type, flow rate and focal position. A confirmation experiment were conducted using the optimized welding parameters.

A Study on Dose Distribution around Fletcher-Suit Colpostat Containing Cs-137 Source by a Computer (컴퓨터 의한 Fletcher-Suit Colpostat 주변의 Cs-137의 선량분포에 관한 연구)

  • Kang Wee-Saing
    • Radiation Oncology Journal
    • /
    • v.7 no.2
    • /
    • pp.305-311
    • /
    • 1989
  • Fletcher-Suit colpostat has an internal structure to reduce dose to bladder and rectum. Some programs were developed to calculate dose at any point in water in three dimension around the colpostat containing Cs-137 tube, to find the shielding effect to dose by the internal structure, and to draw isodose curves and iso-shielding effect curves. Computer was an IBM compatible AT with EGA card and language was MS-Basic V6.0, Material, shape and geometry of the strucure, tube and colpostat were considered in algorithm for calculation of dose. Dose rates per unit mg. Ra. eq. in water calculated by a program were stored in auxiliary memory devices and retrieved in another programs. Isodose curves on medial side shrinked. Dose distribution was not symmetric about a transverse axis bisecting the colpostat. Reduction of dose was more excessive on top side than on bottom. Iso-shielding effect curve showed that the shielding effect was higher on top side than on bottom, and that there was shielding effect over almost all area of medial side. Such results were related to both shifted position of tube in the colpostat and asymmetric distribution of active source in the tube. Maximum of shielding effect was $49\%$ on top side and $44\%$ on bottom side. The direction of iso-shielding effect curve was generally radial from the center of active source. In treatment planning using Fletcher-Suit colpostat, the internal structure should be considered to find precise doses to bladder and rectum, etc.

  • PDF

Verification of Shielding Materials for Customized Block on Metal 3D Printing (금속 3D 프린팅을 통한 맞춤형 차폐블록 제작에 사용되는 차폐 재료 검증)

  • Kyung-Hwan, Jung;Dong-Hee, Han;Jang-Oh, Kim;Hyun-Joon, Choi;Cheol-Ha, Baek
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.1
    • /
    • pp.25-30
    • /
    • 2023
  • As 3D printing technology is used in the medical field, interest in metal materials is increasing. The Department of Radiation Oncology uses a shielding block to shield the patient's normal tissue from unnecessary exposure during electron beam therapy. However, problems such as handling of heavy metal materials such as lead and cadmium, reproducibility according to skill level and uncertainty of arrangement have been reported. In this study, candidate materials that can be used for metal 3D printing are selected, and the physical properties and radiation dose of each material are analyzed to develop a customized shielding block that can be used in electron beam therapy. As candidate materials, aluminum alloy (d = 2.68 g/cm3), titanium alloy (d = 4.42 g/cm3), and cobalt chromium alloy (d = 8.3 g/cm3) were selected. The thickness of the 95% shielding rate point was derived using the Monte Carlo Simulation with the irradiation surface and 6, 9, 12, and 16 energies. As a result of the simulation, among the metal 3D printing materials, cobalt chromium alloy (d = 8.3 g/cm3) was similar to the existing shielding block (d = 9.4 g/cm3) in shielding thickness for each energy. In a follow-on study, it is necessary to evaluate the usefulness in clinical practice using customized shielding blocks made by metal 3D printing and to verify experiments through various radiation treatment plan conditions.