• 제목/요약/키워드: Shielding Materials

검색결과 537건 처리시간 0.024초

친환경 실내 디자인 소재 개발 활용 방안 (Application of the Eco-friendly Materials for the Interior Design)

  • 성낙봉
    • 한국콘텐츠학회논문지
    • /
    • 제11권10호
    • /
    • pp.209-216
    • /
    • 2011
  • 본 논문에서는 실내디자인의 친환경 소재로 응용할 수 있는 한지, 옻, 숯을 이용하여 전자파 차폐 물질을 제안하였고 이를 통해 실내 공간의 전자파 차폐 및 심미성 증대를 위한 이미지월 디자인의 예를 제시하였다. 제안된 전자파 차폐 물질은 한지 위에 옻과 숯을 도포하여 두께 2.0 mm의 시료로 제작되었고, 직류 전원에서 2 GHz의 교류에 대해 95% (13 dB 이상) 이상의 전자파 차폐 특성을 보였다. 이러한 친환경 소재의 전자파 차폐 물질을 벽지나 아미지월에 적용하여 실내 디자인에 활용함으로서 실내 공간에서 발생되는 인체의 유해 전자파를 효과적으로 차폐할 수 있을 뿐만 아니라 친환경 소재를 통해 포름알데히드, 휘발성 유기화합물 등과 같은 각종 유해 화학물질로부터의 피해를 최소한으로 줄일 수 있게 될 것이다.

SHIELDING PERFORMANCE OF A NEWLY DESIGNED TRANSPORT CASK IN THE ADVANCED CONDITIONING SPENT FUEL PYROPROCESS FACILITIY

  • Park, Chang-Je;Jeong, Chang-Joon;Min, Deok-Ki;Kang, Hee-Young;Choi, Woo-Seok;Lee, Joo-Chan;Bang, Gyeoung-Sik;Seo, Ki-Seog
    • Nuclear Engineering and Technology
    • /
    • 제40권4호
    • /
    • pp.319-326
    • /
    • 2008
  • To transport process wastes efficiently from the Advanced Spent Fuel Conditioning Pyro-process Facility (ACPF) at the Korea Atomic Energy Research Institute (KAERI), a new hot cell cask has been designed based on an existing hot cell padirac transport cask, with not only a neutron absorber for improved shielding capability, but also a docking facility for an easy docking system. In the new hot cell cask, two kinds of materials have been considered as shielding materials, polyethylene and resin. To verify the transport compatibility of the waste and spent fuel for the ACPF, neutron and photon shielding calculations were performed using the MCNPX code. The source term was evaluated by the ORIGEN-ARP code system based on spent PWR fuel. From the calculation, it was found that the maximum surface dose rates of the hot cell cask with the two candidates were estimated within the limit (2 mSv/hr).

아몰포스선을 이용한 전력선의 자계분포 (Magnetic Field Distribution of Power Line Using Amorphous Wire)

  • Moriyama, T.;Cho, M.W.;Hikita, M.;Hong, J.W.
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.609-612
    • /
    • 2001
  • To investigate the magnetic field distribution of power line, we used amorphous wire sensor. And we discuss extremely low frequency magnetic field distribution dependent upon arrangement of power line and shielding pipe made from iron or alumimum materials by both measurement and FEM(Finite Element Method) analysis. Appling current of single phase 60 [Hz] 15 [A] is supplied to copper wire coated enamel resign. As the results, we confirmed that linear characteristics of amorphous wire sensor is very excellent and measurement value agrees with FEM calculation. Magnetic field distribution due to shielding materials is changed by permeability and conductivity.

  • PDF

탄소나노튜브를 이용한 전자파 차폐재 (Electromagnetic interference shielding materials using carbon nanotubes)

  • 윤호규
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 추계학술발표대회 논문집
    • /
    • pp.33-36
    • /
    • 2003
  • AC and DC conductivity of the MWNT(Multi walled nanotubes)/polyurethane composites were investigated with respect to the various oxidative conditions, where these means acid concentration, treatment temperature, and treatment time. We suppose that the conditions of oxidation of the MWNTS have a certain influence on the degree of functionalization, damages, and dispersion of the MWNT themselves. Futhermore, the electrical properties of the resulting composites strongly depend on the oxidative conditions of MWNTS. The conductivity of the composites produced by using the optimal condition was measured as a function of frequency with volume content of MWNTS. These experimental results were analyzed using percolation theory Electromagnetic interference shielding effectiveness (SE) of the mixtures of polyurethane (PU), optimized MWNTs, and silver (Ag) is measured in the frequency range from 10 MHz to 6 ㎓ by using ASTM D4935-89. The measured SEs of the mixtures could be controlled from about 55 dB to 85 dB with the compositions of Ag/MWNT and compounding methods(C1, C2).

  • PDF

자성 페라이트 용사피막의 전자파 차폐 특성 (Electromagnetic Wave Shield Characteristics of Thermal Sprayed Ferrite Coatings)

  • 정태식;김태형;박경채
    • Journal of Welding and Joining
    • /
    • 제20권1호
    • /
    • pp.76-82
    • /
    • 2002
  • In these days, many advanced nations have enforced import restrictions against things emitting electromagnetic wave which has report that it is so harmful. In general, electromagnetic wave is composed of electric wave and magnetic wave. The reflection of electromagnetic wave is mainly reflected by conductive materials and the magnetism loss is generated by magnetic ferrite. The magnetism loss of ferrite is separated by eddy current loss, residual magnetism loss and hysteresis loss. Thermal sprayed coating is intended to manufacture because of simple processes and high efficient electromagnetic wave shielding. The high efficient thermal sprayed coatings were made from the magnetic ferrite materials that characterizes absorption of electromagnetic wave, and the electric conductive materials that characterize emitting of electromagnetic wave. This study was manufactured thermal sprayed coatings to improve absorption-efficiency, and measured the electromagnetic wave shielding efficiency. As the experimental results, high electromagnetic wave shield efficiency was obtained at wave frequency 2GHz to thermal sprayed ferrite coatings manufactured by size distribution range of spray powders, $38~88\mu\textrm{m}$.

솔보써말 방법을 이용한 구리분말 제조 및 전자파 차폐제로의 응용 (The Preparation of Copper Powder Using Solvothermal Process and Its Application as EMI Shielding Agent)

  • 이효원;김수룡;권우택;최덕균;김영희
    • 한국재료학회지
    • /
    • 제16권5호
    • /
    • pp.285-291
    • /
    • 2006
  • Copper powders have been widely used in electrically conductive coatings, electrode materials et al. and are very prospective since they are cheaper than noble metal powders such as silver or palladium. In this study, copper powders for metal filler of EMI shielding have been prepared using a solvothermal process from $CuSO_4$, NaOH, Glucose, mixed solvent ($H_2O$: Ethanol) and hydrazine which was used as a reducing agent at various reaction conditions. The prepared copper powders showed finely dispersed spherical shape without agglomerate, uniform morphology, narrow size distribution, high purity and were about 400-700 nm in size. The prepared powders were characterized using XRD, SEM, TGA, XPS, particle size measurement and EMI shielding efficiency.

Design and stress analysis of femur bone implant with composite plates

  • Ramakrishna, S.;Pavani, B.
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • 제5권1호
    • /
    • pp.37-50
    • /
    • 2020
  • Development of lightweight implant plates are important to reduce the stress shielding effect for a prosthesis of femur bone fractures. Stainless steel (SS-316L) is a widely used material for making implants. Stress shielding effect and other issues arise due to the difference in mechanical properties of stainless steel when compared with bone. To overcome these issues, composite materials seem to be a better alternative solution. The comparison is made between two biocompatible composite materials, namely Ti-hydroxyapatite and Ti-polypropylene. "Titanium (Ti)" is fiber material while "hydroxyapatite" and "polypropylene" are matrix materials. These two composites have Young's modulus closer to the bone than stainless steel. Besides the variety of bones, present paper constrained to femur bone analysis only. Being heaviest and longest, the femur is the most likely to fail among all bone failures in human. Modelling of the femur bone, screws, implant and assembly was carried out using CATIA and static analysis was carried out using ANSYS. The femur bone assembly was analyzed for forces during daily activities. Ti-hydroxyapatite and Ti-polypropylene composite implants induced more stress in composite implant plate, results less stress induced in bone leading to a reduction in shielding effect than stainless steel implant plate thus ensuring safety and quick healing for the patient.

전기로 산화슬래그 골재를 활용한 방사능차폐콘크리트의 방사능 차폐 성능에 관한 연구 (A Study on Radiation Shielding Performance of Radiation Shielding Concrete Utilizing Electronic arc Furnace Oxidizing Slag)

  • 임희섭;이한승;최재석
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2011년도 추계 학술논문 발표대회
    • /
    • pp.243-244
    • /
    • 2011
  • In general, magnetite or barite (density: more than 4.0ton/㎥) has been used in concrete for radiation shielding, and radiation tests have been performed to evaluate shielding performance. However, researchers have not studied concrete for radiation shielding that utilizes electric arc furnace oxidizing slag. This research aims to utilize electric arc furnace oxidizing slag which depends on reclamation as environment-friendly concrete materials by using coarse and fine aggregates of electric arc furnace slag containing 30% ferrous metal and with a density of around 3.0~3.8 ton/㎥. Accordingly, this research has judged that the high density electric arc furnace oxidizing slag aggregate can be applied to radiation shielding concrete. It has also examined the possibility of developing radiation shielding concrete utilizing electric arc furnace oxidizing slag aggregate by comparing concrete utilizing all fine and coarse aggregate of electric arc furnace oxidizing slag with concrete using magnetite.

  • PDF

6 MeV 전자선 치료 시 차폐물질로서 알루미늄, 구리, 납 (Aluminum, Copper and Lead as Shielding Materials in 6 MeV Electron Therapy)

  • 이승훈;차석용;이선영
    • 한국콘텐츠학회논문지
    • /
    • 제14권2호
    • /
    • pp.457-466
    • /
    • 2014
  • 고 에너지 전자선 치료에 있어서 차폐물질은 종양조직 외 정상조직이나 주요장기를 보호하기 위해 사용된다. 하지만 이러한 물질에서 발생되어지는 산란선은 심부선량에 영향을 줄 수 있으며, 물질원자번호에 따라 다르게 나타난다. 이에 차폐물질로써 사용가능한 알루미늄, 구리, 납 등의 다양한 원자번호 물질을 전하 감약율 95% 되는 두께로 하여 측정과 MCNPX 모의계산으로 산란율을 비교분석하였다. 산란선 영향을 많이 받는 표면의 선량변화율은 최대 물질두께에서 +0.88%, 원자번호에서 +0.43%의 영향을 받으며, 전하 감약율 95% 되는 두께의 알루미늄, 구리, 납 물질은 측정에서 +19.70%, +15.20%, +12.40% 계산에서 +25.00%, +15.10%, +13.70%를 보였다. 이로 인해 산란율은 물질두께가 원자번호보다 많은 영향을 주며, 산란전자가 광자보다 많은 기여를 하고 있음을 알 수 있었다. 이에 임상에서의 적절한 차폐물질은 두께영향 산란선이 적게 방출되는 고 원자번호물질이 적당하다고 사료된다.

Analysis of transmission efficiency of the superconducting resonance coil according the materials of cooling system

  • Lee, Yu-Kyeong;Hwang, Jun-Won;Choi, Hyo-Sang
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제18권1호
    • /
    • pp.46-49
    • /
    • 2016
  • The wireless power transfer (WPT) system using a magnetic resonance was based on magnetic resonance coupling of the transmission and the receiver coils. In these system, it is important to maintain a high quality-factor (Q-factor) to increase the transmission efficiency of WPT system. Our research team used a superconducting coil to increase the Q-factor of the magnetic resonance coil in WPT system. When the superconductor is applied in these system, we confirmed that transmission efficiency of WPT system was higher than normal conductor coil through a preceding study. The efficiency of the transmission and the receiver coil is affected by the magnetic shielding effect of materials around the coils. The magnetic shielding effect is dependent on the type, thickness, frequency, distance, shape of materials. Therefore, it is necessary to study the WPT system on the basis of these conditions. In this paper, the magnetic shield properties of the cooling system were analyzed using the High-Frequency Structure Simulation (HFSS, Ansys) program. We have used the shielding materials such as plastic, aluminum and iron, etc. As a result, when we applied the fiber reinforced polymer (FRP), the transmission efficiency of WPT was not affected because electromagnetic waves went through the FRP. On the other hand, in case of a iron and aluminum, transmission efficiency was decreased because of their electromagnetic shielding effect. Based on these results, the research to improve the transmission efficiency and reliability of WPT system is continuously necessary.