• Title/Summary/Keyword: Shielding 과정

Search Result 56, Processing Time 0.024 seconds

Physical Properties of Medical Radiation Shielding Sheet According to Shielding Materials Fusion and Resin Modifier Properties (차폐 재료의 융합과 개질제 특성에 따른 의료방사선 차폐 시트 물리적 특성 고찰)

  • Kim, Seon-Chil
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.12
    • /
    • pp.99-106
    • /
    • 2018
  • The modifier proposed in this research is for enhancing the affinity of the glass component with the high polymer resin and the molecular weight. The particle packing, tensile strength and shielding performance of the shielding sheet made of the tungsten oxide were evaluated. The best effect can be obtained when 20% of the modifier PMMA used to improve the shielding performance and maintain the affinity and strength with the sealant is mixed. The fusion of the materials presented in this study and the mass production of the shielding sheet through the modifier are possible and will contribute to the production of lightweight shielding sheets in the future.

Lens shielding block 제작시 업무개선에 관한 고찰

  • 차우정;조현상;김영곤;김종식;박영환
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.14 no.1
    • /
    • pp.95-99
    • /
    • 2002
  • I. 목적 : 결막 림프종 환자의 전자선 치료를 위해 Lens shielding block의 제작시 외부 의뢰 제작과 SMC 자체 제작의 장${\cdot}$단점을 비교해보고 제작 과정에 있어 업무의 효율성을 평가하고자 한다. II. 대상 및 방법: Lens shielding block의 제작시 외부의뢰제작과정과 자체 제작 과정을 비교하여 업무의 효율성, 인력의 변화 및 두방법의 장?단점을 분석하였다. 모의치료후 두 방법의 제작 시간을 비교하였으며, 재료의 차이점과 이용방법을 비교하여 개선된 사항을 알아보았다. III. 결과 : Lens shielding block의 자체 제작시 치료 시작시기는 모의치료 실시 후 7일에서 3일로 단축되어 업무의 효율성과 그에 따른 환자의 불편함이 줄어들게 되었다. 또한, 외부의뢰 제작 과정에서 실시되었던 치과와 치과 기공실에 의뢰하던 과정이 없어지고 과내 모의치료실과 공작실에서 작업하게 되어 모든 작업을 과내에서 일률적으로 실시할 수 있게 되었다. 또한, 모의치료를 실시하면서 실시간으로 shielding block을 수정 할 수 있어 정확성이 재고되었고, 반복되는 제작 작업으로 인해 제작 공정이 보편화되고, 손쉬어졌으며, 재료 활용의 효율성이 증대되었다. IV. 결론 : Lens shieiding block의 자체 제작으로 시간이 단축되어 업무의 효율성이 증대되었고 그에 따른 인력소모와 환자의 불편함이 줄어들게 되었으며, 제작자가 모의치료를 통해 바로 block의 오차를 수정할 수 있어 치료의 안정성 및 정확성이 높아졌으므로 결론적으로 의료의 질 개선과 서비스 향상이 이루어졌다.

  • PDF

Prediction of Shielding Performance by Thickness by Comparing the Single and Laminated Structures of Lead-free Radiation Fusion Shielding Sheets (무연 방사선 융합 차폐시트 단일 구조와 적층 구조의 비교를 통한 두께별 차폐성능 예측)

  • Kim, Seon-Chil
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.1
    • /
    • pp.105-110
    • /
    • 2021
  • Radiation shielding of affinity material, which is widely used in medical institutions, is made in sheet form and is mainly applied to apron. Shielding performance is presented based on lead equivalent, and is presented as 0.25-0.50mmPb. In the case of shielding materials where lead is used as the main material, the shielding performance can be adjusted by thickness due to the excellent machinability of lead. However, eco-friendly shielding sheets are difficult to control shielding performance based on thickness criteria as shielding performance varies depending on the content of shielding materials, the properties of polymeric materials that are base materials, and the technical differences in the process. In this study, shielding sheets were manufactured based on thickness to solve these problems and the shielding performance was compared in this study. As a result, it was shown that the laminated structure shielding sheet was more effective.

Verification of the Possibility of Convergence Medical Radiation Shielding Sheet Using Eggshells (계란 껍데기를 이용한 융합 의료방사선 차폐시트의 가능성 검증)

  • Kim, Seon-Chil
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.6
    • /
    • pp.33-38
    • /
    • 2021
  • In order to manufacture a lightweight medical radiation shielding sheet, a new shielding material was studied. We tried to verify the possibility of a shielding material by mixing egg shell powder, which is thrown away as food waste at home, with a polymer material. Existing lightweight materials satisfy eco-friendly conditions, but there are difficulties in the economics of shielding materials due to the cost of the material refining process. This study aims to solve this problem by using egg shells, which are household waste. A 3 mm-thick shielding sheet was fabricated using HDPE, a polymer material, and particle distribution within the cross-section of the shielding sheet was also verified. The shape of the particles was rough and there were voids between the particles, and the average weight per unit area was 1.5 g/cm2. The shielding performance was around 20% in the low energy area and 10% in the high energy area, showing the possibility of a low-dose medical radiation shielding body.

A study on the titanium welding process according to the temperature characteristics of shielding methods (티타늄 용접공정에서 온도특성에 따른 실딩방법에 관한 연구)

  • Chung, Han-Shik;Jeong, Hyo-Min;Lee, Dae-Chul;Lee, Byeong-Yong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.29-34
    • /
    • 2013
  • The welds tent to be weakened if it is exposed to the air during the welding process. In titanium welding with Gas Tungsten Arc Welding, inappropriate colors of the welds, such as purple/red, blue, yellow, gray, white and pink represents that it is contaminated by oxygen and nitrogen in the air. Shielding gases can be used to protect welds from the contamination. In addition, Weld metal and heat affected zone (HAZ) are also shielded from the air when it is cooled down to the room temperature. In this paper, appropriate shielding gases for the shape and form of Trailing Shielding Jig and torch shielding ($13{\sim}20{\ell}/min$), after shielding ($22{\sim}30{\ell}/min$), and back shielding ($25{\sim}30{\ell}/min$) are studied.

Literature Review on Material Development and Performance Evaluation Method for EMP Shielding Concrete (EMP 차폐 콘크리트 개발 및 성능평가 방법에 관한 문헌 연구)

  • Lee, Woong-Jong;Lee, Hwan;Kim, Young-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.67-76
    • /
    • 2020
  • The purpose of this study was to derive the directionality of technology development of high-power electromagnetic pulse (EMP) shielding concrete and standardization of a shielding performance evaluation method. Because the EMP shielding mechanism of concrete has not been identified clearly, and the verification method for EMP shielding performance has not been standardized, it is difficult to compare the research results between researchers. The development direction of EMP shielding concrete was derived from a consideration of the electromagnetic wave loss mechanism of metal. The standardization direction for verifying the EMP shielding performance of concrete was derived from a consideration of the electrical properties of concrete and the shielding performance evaluation methods of previous studies. As a result, the development of electrically conductive concrete is required, and test methods classified by the electromagnetic wave loss mechanism should be applied. For quality verification, the development of EMP shielding concrete will be feasible and its performance can be evaluated if a test method referencing the generalized shielding evaluation method (MIL-STD, etc.) is applied.

Verification of the Protective Effect of Functional Shielding Cream for the Prevention of X-ray Low-dose Exposure (X-ray 저선량 피폭방지를 위한 기능성 차폐크림의 방어 효과 검증)

  • Seon-Chil Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.4
    • /
    • pp.497-506
    • /
    • 2023
  • In the case of radiation workers in medical institutions, radiation exposure is made for patient protection and accurate procedures, so they have a problem of low dose exposure. Low-dose radiation exposure occurs mainly in parts of the body other than the Apron area, and the most frequent place is the skin of the back of the hand. In particular, since the medical personnel's hands require senses and fine movements during the procedure, they are defenseless in the radiation exposure area and are at risk of exposure. It can solve the problem of shielding such as lead gloves, and it is difficult to use by suggesting the activity of the hand during the procedure. To solve this problem, a shielding cream capable of obtaining a functional radiation protection effect was developed and its shielding performance was compared with lead equivalent of 0.1 mmPb. In the process of manufacturing shielding cream, the shielding performance was improved by adding a defoaming process to reduce air holes to increase the density of the cream. Therefore, the shielding cream using barium sulfate as the main material has a lower shielding rate than the lead plate, and in the realm of effective energy, it is 59%, At high effective energy, a difference of about 37% was shown, indicating that there is a functional radiation protection effect. The advantage is that it can be used directly on the skin, and it is considered that it can be used before wearing surgical gloves and has a permanent protective effect.

EMP Shielding Effectiveness of Water Pipe Structure Considering Attenuation Characteristics of Water (물의 감쇠특성을 고려한 배수관 구조의 EMP 차폐 효과 분석)

  • Kim, Woobin;Kim, Sangin;Kim, Waedeuk;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.12
    • /
    • pp.1011-1014
    • /
    • 2017
  • Additional metal shielding is installed in the water pipes used in septic tanks to protect against damage from electromagnetic pulse (EMP) events. This shielding prevents EMP damage, but impurities present in water cannot pass through the shielding structure. Thus, the original function of the water pipes is lost as the pipes are blocked, and an additional maintenance workforce is needed to manage this blockage. To solve this problem, we propose a water pipe without an additional shielding structure; the proposed pipe was designed with consideration of the attenuation characteristics of water. The immersed depth was varied from 400 mm to 800 mm, while the diameter of the pipe was fixed at 100 mm. The shielding effectiveness increased from 70 dB to 100 dB around 2 GHz. Through the verification process, we propose an effective design guideline that can maintain the function of the water pipe and provide protection from EMP damages without additional shielding structure.

A Study of Optimum Shielding Gas Flow Rate in FCAW for Shipbuilding (선박조립과정의 FCAW 적용시 적정 보호가스 유량에 대한 연구)

  • Lee, Hoon-Dong;Shim, Chun-Sik;Song, Ha-Cheol;Yum, Jae-Seon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.1
    • /
    • pp.76-83
    • /
    • 2011
  • FCAW(Flux Cored Arc Welding) is a widely used welding method in shipbuilding. It also conducts WPS(Welding Procedure Specification) requested by the classification variations of the factors which affect the quality on the welded area such as thickness of base metal, type of welding wire and shielding gas etc. which has to be satisfied. CO2 is commonly used as a shielding gas for FCAW due to the economic point of view. The amount of shielding gas is stated when classification certify WPS. However, the shielding gas is unnecessarily used at the shipyard leaning only on the welder's experience as there are classification standards for using the shielding gas. It causes production cost to rise. Also recently, CO2 is a main contributor for global warming, and large amounts of CO2 are discharged into the atmosphere during shipbuilding processes without any filtration. Therefore it was confirmed by the security of the welded area as a result of conducting the destructive and non-destructive tests with setting up the factors and the standards by using the Taguchi method. Then the FCAW shielding gas's amounts were calculated precisely when assembling a ship. It will be applied to cost reduction and prevention of environmental pollution at the shipyard.

Development of Radiation Shielding Sheet with Environmentally-Friendly Materials; II: Evaluation of Barum, Tourmaline, Silicon Polymers in the Radiation Shielding Sheet (친환경 소재의 의료 방사선 차폐 시트 개발; II: 바륨, 토르말린의 실리콘 폴리머 차폐 시트의 성능 평가)

  • Kim, Seon-Chil;Park, Myeong-Hwan
    • Journal of radiological science and technology
    • /
    • v.34 no.2
    • /
    • pp.141-147
    • /
    • 2011
  • We developed an alternative radiation shielding material which is economical and has high protection efficiency. We validated the material in the form of sheet to make an apron. We increased the rate of barium and mixed tourmaline into silicon to improve the flexibility and protection rate of the sheet. The results showed that the shielding effect at low radiation energy is good enough with both 5 mm and 7 mm thickness. In the future, we will perform a quantitative evaluation of the reproducibility, volumetric efficiency, and porosity in mixing the ingredients.