• 제목/요약/키워드: Shell-form

검색결과 294건 처리시간 0.029초

연질캡슐 피막물질로서 식물성 성분 원료와 젤라틴에 대한 품질특성 비교 (Comparative Characterization Study on Quality Attributes of Vegetable and Gelatin as Capsule Shell of Soft Capsule)

  • 김동욱;원권연
    • 약학회지
    • /
    • 제59권2호
    • /
    • pp.70-76
    • /
    • 2015
  • A Softgel is an oral dosage form for medicine similar to capsules and softgel dosage form offers several advantages over other oral dosage forms, such as delivering a liquid matrix designed to solubilize and improve the oral bioavailability of a poorly soluble compound as a unit dose solid dosage form, delivering low and ultra-low doses of a compound. This study aimed to qualify a proprietary vegetable soft capsule which contains modified starch and carrageenan as capsule shell components compare to the conventional gelatin softgel. Four kinds of samples were prepared with vegetable and gelatin capsule shell, respectively. Morphology of capsule shell, mechanical strength of capsule, and hygroscopic properties were studied for comparing the quality attributes of softgel. Short-term stability against heat and moisture was also investigated in this study. Vegetable capsule shell showed better mechanical strength, physical stability and disintegration time for temperature and humidity than those of conventional gelatin capsule shell with four different filling materials used frequently as soft capsule form. Conclusively, this vegetable capsule shell polymer system can replace easily gelatin-shell systems and additionally allows encapsulation of lipid fills at high temperatures that are semisolid or solid-like at room temperature.

쉘 요소를 이용한 박판성형공정의 유한요소해석 (Finite Element Analysis of Sheet Metal Forming Process Using Shell Element)

  • 정동원;고형훈;이찬호;유호영
    • 한국정밀공학회지
    • /
    • 제23권1호
    • /
    • pp.152-158
    • /
    • 2006
  • The AutoForm previously used the membrane element and it accomplished sheet metal forming analysis. The membrane analysis has been widely applied to various sheet metal forming processes because of its time effectiveness. However, it is well-known that the membrane analysis can not provide correct information for the processes which have considerable bending effects. In this research experimental results were compared with the analysis results obtained by using the shell element which is applied newly in the AutoForm commercial software. The shell element is a compromise element between continuum element and membrane element. The Finite element method by using shell element is the most efficient numerical method. From this research, it is known that FEA by using shell element can predict accurately the problems happened in actual experimental auto-body panel.

쉘 요소를 이용한 박판성형공정의 불량 예측 평가 (Prediction evaluation of problems happened of Sheet Metal Forming Process Using Shell Element)

  • 고형훈;이찬호;강동규;설남기;이광식;정동원
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.481-484
    • /
    • 2005
  • The AutoForm previously used the membrane element and it accomplished sheet metal forming analysis. The membrane analysis has been widely applied to various sheet metal forming processes because of its time effectiveness. However, it's well known that the membrane analysis can not provide correct information for the processes which have considerable bending effects. In this research it tried to compare the analysis results which use the shell element which is applied newly in the AutoForm commercial software with actual experimental results. The shell element is compromise element between continuum element and membrane element. The Finite element method by using shell element is the most efficient numerical method. From this research, it is known that FEA by using shell element can predict accurately the problems happened in actual experimental auto-body panel.

  • PDF

복합적층쉘의 저속충격에 대한 동적 거동 해석 (Dvnarnic Reswnse of Laminated Com~osite Shell under Low-Velocity Impact)

  • 조종두;조영훈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1994년도 추계학술대회 논문집
    • /
    • pp.969-974
    • /
    • 1994
  • The dynamic behavior of graphite/epoxy laminated composite shell structure due to low-velocity impact is investigated using the finite element method. In this analysis, the Newmark's constant-acceleration time integration algorithm is used. The impact response such as contact force, central deflection and dynamic strain history form shell structure analysis are compared with those form the plate non-linear analysis. The effects of curvature, impact velocity and mass of impactor on the composite shell are discussed.

  • PDF

쉘 요소를 이용한 박판성형공정의 유한요소해석 (Finite Element Analysis of Sheet Metal Forming Process Using Shell Element)

  • 고형훈;이찬호;강동규;설남기;이광식;정동원
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.122-125
    • /
    • 2005
  • The AutoForm previously used the membrane element and it accomplished sheet metal forming analysis. The membrane analysis has been widely applied to various sheet metal forming processes because of its saving time effectiveness. However, it's well known that the membrane analysis can not provides correct information for the processes which considerable bending effects. From this time research it tried to compare the formation analysis result which uses the shell element which is applied newly in the AutoForm and actual products. The shell element is compromise method between continuum analysis and membrane analysis. The Finite element method by using shell element is the most economical numerical method. From analysis results, FEA by using shell element can estimate accurately the problems happened in actual auto-body panel.

  • PDF

Spline/NURBS 자유곡면과 쉘 해석의 연동 (The Linkage between Spline/NURBS Free Surface and Shell Finite Element Analysis)

  • 노희열;조맹효
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.303-310
    • /
    • 2001
  • We propose the framework which directly links shell finite element to the free form surface geometric modeling. For the development of a robust shell element, a first order shear deformable shell theory and partial mixed variational functional are provided. Bubble functions are included in the shape function of displacement to improve the performance of the developed element. The Spline/NURBS is used to generate the general free form of parameterized shell surfaces. The proposed shell finite element model linked with NURBS surface representation provides efficiency for design and analysis. Numerical examples are given in order to assess the accuracy of the performances of the proposed element.

  • PDF

코어-쉘 구조 SiO2@Au 나노입자의 in-situ 합성 (Nanostructure Construction of SiO2@Au Core-Shell by In-situ Synthesis)

  • 편무재;김도경;정영근
    • 한국분말재료학회지
    • /
    • 제25권5호
    • /
    • pp.420-425
    • /
    • 2018
  • Core-shell structured nanoparticles are garnering attention because these nanoparticles are expected to have a wide range of applications. The objective of the present study is to improve the coating efficiency of gold shell formed on the surface of silica nanoparticles for $SiO_2@Au$ core-shell structure. For the efficient coating of gold shell, we attempt an in-situ synthesis method such that the nuclei of the gold nanoparticles are generated and grown on the surface of silica nanoparticles. This method can effectively form a gold shell as compared to the conventional method of attaching gold nanoparticles to silica particles. It is considered possible to form a dense gold shell because the problems caused by electrostatic repulsion between the gold nanoparticles in the conventional method are eliminated.

타원형 다단계 디프드로잉 용기의 최적 예비형성 설계에 관한 연구 (A Study on the Optimum Pre-form Design for Multistage Deep Drawing of Oval Shells)

  • 김두환
    • 소성∙가공
    • /
    • 제8권4호
    • /
    • pp.356-363
    • /
    • 1999
  • This paper discusses some techniques for the determination of optimum blank size and pre-form design for multi-stepped deep drawing of oval shell. The deep drawing process of oval shape has been regarded as more difficult than that of cylindrical shell because of its complicated behavior of plastic deformation. But there is insufficient information in this area to carry out successful deep drawing work of irregular products such as oval, rectangular, and square shapes. In order to find the optimum conditions, the drawing apparatus for two kinds of pre-form design are built, a series of drawing experiments performed, and thickness stain distributions measured. From the results of thess suggested experiments, various optimum process variables are observed and discussed.

  • PDF

셸 요소를 적용한 전체 스팸핑 공정의 성형 해석에 관한 연구 (A Study on Forming Analysis of Overall Stemping Process Apply Shell Element)

  • 정동원;김동홍;김봉천
    • 한국생산제조학회지
    • /
    • 제20권3호
    • /
    • pp.329-334
    • /
    • 2011
  • The characteristic of sheet metal process is the few loss of material during process, the short processing time and the excellent price and strength. The static implicit finite element method is applied effectively to analyze stamping processes from using AutoForm software. The simulation analysis can be applied to the membrane elements and shell elements. Membrane elements can be applied to good efficiency, but lower than the accuracy of shell elements. Therefore, simple drawing process applies membrane element, and spring-back and analysis of stamping process are judged that it is most efficient that apply shell clement. This study, the simulated results for stamping processes are shown and discussed.

스플라인 곡면 모델링과 쉘 유한요소와의 연동 가시화 (Visualization of Integration of Surface Geometric Modeling and Shell Finite Element Based on B-Spline Representation)

  • 조맹효;노희열;김현철
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.505-511
    • /
    • 2002
  • In the present study, we visualize the linkage framework between geometric modeling and shell finite element based on B-spline representation. For the development of a consistent shell element, geometrically exact shell elements based on general curvilinear coordinates is provided. The NUBS(Non Uniform B-Spline) is used to generate the general free form shell surfaces. Employment of NUBS makes shell finite element handle the arbitrary geometry of the smooth shell surfaces. The proposed shell finite element .model linked with NUBS surface representation provides efficiency for the integrated design and analysis of shell surface structures. The linkage framework can potentially provide efficient integrated approach to the shape topological design optimizations for shell structures.

  • PDF