• Title/Summary/Keyword: Shell-and-Tube

Search Result 227, Processing Time 0.022 seconds

Study on Effect of Increase in Inlet Temperature on Nafion Membrane Humidifier (입구온도 변화가 중공사형 나피온 막가습기의 성능에 미치는 영향에 대한 연구)

  • Hwang, Jun-Young;Chang, Hyo-Sun;Kang, Kyung-Tae;Kang, Heui-Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.4
    • /
    • pp.361-369
    • /
    • 2011
  • The effect of an increase in the temperature of inlet air on the performance of a membrane humidifier for a PEMFC (Polymer Electrolyte Membrane Fuel Cell) vehicle was investigated both experimentally and numerically. A shell-and-tube type gas-to-gas humidifier with Nafion membrane was tested. The experimental result showed that water transfer varies nonlinearly with the temperature elevation. Numerical analysis based on detailed modeling was also conducted in simplified geometry of a single tube to explain this nonlinear behavior. The simulation revealed that the local water flux varies nonlinearly and dramatically along the tube. The analysis was based on the inverse relationship between the increase in temperature and decrease in relative humidity, both of which seriously affect the water conductivity of the membrane.

Prediction of Internal Tube Bundle Failure in High Pressure Feedwater Heater for a Power Generation Boiler by the Operating Record Monitoring (운전기록 모니터링에 의한 발전보일러용 고압 급수가열기 내부 튜브의 파손예측)

  • Kim, Kyeong-seob;Yoo, Hoseon
    • Plant Journal
    • /
    • v.15 no.2
    • /
    • pp.56-61
    • /
    • 2019
  • In this study, the failure analysis of the internal tube occurred in the high pressure feedwater heater for power generation boiler of 500 MW supercritical pressure coal fired power plant was investigated. I suggested a prediction model that can diagnose internal tube failure by changing the position of level control valve on the shell side and the suction flow rate of the boiler feedwater pump. The suggested prediction model is demonstrated through additional cases of feedwater system unbalance. The simultaneous comparison of the shell side level control valve position and the suction flow rate of the boiler feedwater pump compared to the normal operating state value, even in the case of the high pressure feedwater heater for the power boiler, It can be a powerful prediction diagnosis.

Effects of Cylinder Shell Elasticity on Effective Bulk Modulus of Oil in Automotive Hydraulic Dampers (차량용 유압감쇠기 내 기름의 유효 체적탄성계수에 미치는 실린더 벽 탄성의 영향)

  • 이일영;손단단
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.187-197
    • /
    • 2004
  • This paper presents the effects of cylinder shell elasticity on effective bulk modulus of oil $K_e$ in automotive hydraulic dampers. A theoretical model of cylinder shell bulk modulus $K_c$ based on the elasticity theory of thick-walled cylinder incorporating not only radial but longitudinal deformation is proposed. In a cylinder, values of $K_c$ by the new model and traditional models are computed and the discrepancies among them are discussed. In a twin-tube type automotive damper, the variation of $K_e$ under different pressure values in chambers of the damper cylinder, based on different theoretical models for $K_c$ is computed. Through these computations, it is shown that remarkable discrepancies in computed values of $K_e$ might occur according to the $K_e$ models in connection with $K_c$ models.

The Study on the Performance Characteristics due to the Degree of Superheat in $NH_3$ Refrigeration System (III) -The Comparison of Heat Exchanger Types- ($NH_3$ 냉동장치의 과열도에 관한 성능 특성 연구(III) -열교환기 타입별 비교-)

  • Lee Jong-In;Kim Yang-Hyun;Park Chan-Soo;Ha Ok-Nam
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.12
    • /
    • pp.1132-1138
    • /
    • 2005
  • Recently, production and use of freon substances are restrained due to depletion of ozone layer and global warming. In this aspect of environmental problems, the best solution is to use the natural refrigerant such as ammonia. Thus, this study is to find the optimal operating conditions by comparing the performance between the shell and tube type and shell and disk type heat exchangers using the ammonia refrigerant, and to verify the superiority of the shell and disk type heat exchanger that is not used in field of refrigeration and air conditioning. Finally, this study shows that the shell and disk type heat exchanger is applicable to the ammonia refrigeration system, and this system minimizes the refrigerant charge and installation space.

Trend Analysis for Basic Design of a Plate and Shell Heat Exchanger (판형쉘열교환기 기본설계를 위한 경향성 분석)

  • Dong-Hyeon Choi;Yoon-Suk Chang;Sun-Yeh Kang
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.18 no.2
    • /
    • pp.69-76
    • /
    • 2022
  • In order to prepare for a future nuclear market, research for developing floating small modular reactor has been initiated with the aim of differentiating it from large nuclear power plants such as distributed power, heat supply to remote communities and sea water desalination. Depending on the characteristics of the small modular reactor, it is necessary to design a plate and shell heat exchanger that can be manufactured smaller than the U-tube recirculation method. In this study, 12 cases are selected by changing the diameter of the heat plate, the thickness of the device body and the size of the stiffener. Finite element analysis is performed by setting the stress classification lines for the point at which deformation is expected under external pressure conditions for these analysis cases. For the basic design of the plate and shell heat exchanger, the optimal conditions are derived by analyzing the tendency of stress change in the device body and stiffener.

Effect of Twisted - Tape Tubulators on Heat Transfer and Flow Friction inside a Double Pipe Heat Exchanger

  • Phitakwinai, Sutida;Nilnont, Wanich;Thawichsri, Kosart
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.2
    • /
    • pp.124-131
    • /
    • 2015
  • Computational fluid dynamics (CFD) has been employed for the Heat exchanger efficiency of a counter flow heat exchanger. The Heat exchanger efficiency has been assessed by considering the computed Nusselt number and flow friction characteristics in the double pipes heat exchanger equipped with two types twisted-tapes: (1) single clockwise direction and (2) alternate clockwise and counterclockwise direction. Cold and hot water are used as working fluids in shell and tube side, respectively. Hot and cold water inlet mass flow rates ranging are between 0.04 and 0.25 kg/s, and 0.166 kg/s, respectively. The inlet hot and cold water temperatures are 54 and $30^{\circ}C$, respectively. The results obtained from the tube with twisted-tapes insert are compared with plain tube. Nusselt number and friction factor obtained by CFD simulations were compared with correlations available in the literature. The numerical results were found in good agreement with the results reported in literature.

Development of a Single Phase Shell-and-Tube Type Heat Exchanger Thermal Design Code Based on Stream Analysis (유동해석에의한 단상용 원통다관형 열교환기 열설계 코드의 개발)

  • 반태곤;이상천;남상철;박병덕
    • Journal of Energy Engineering
    • /
    • v.10 no.4
    • /
    • pp.299-309
    • /
    • 2001
  • This shell-and-tube heat exchanger design code based on stream analysis method was developed to design accurate and advanced heat exchangers. Several geometry factors which affect the heat exchanger design was explained. Stream analysis method to calculate flow fraction of each stream and heat exchanger design flow chart was introduced. Performance of developed simulation code was compared with Delaware09, Delaware10, DongHwa and ANL experimental data. The statistical results of performance evaluation indicated that most data points are predicted within $\pm$30%. But the pressure loss was over predicted.

  • PDF

A Study on the Performance of a Shell Tube Heat- Exchanger with Twisted Tape (비틀림 테이프에 의한 이중관형 열교환기의 성능에 관한 연구)

  • Kim, Doo-Chun;Kim, Chul-Han
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.11 no.2
    • /
    • pp.1-9
    • /
    • 1982
  • Friction losses and heat transfer characteristics were studied experimentally for fully developed tubulent flow in tubes with twisted tape swirl generators. Data were obtained for pitch- to-diameter ratios from 8.10 to 25.71 with water under forced convection cool ins conditions. The experimental results of this and that of previous swirl flow investigation by Smithberg and Landis were compared. Nusselt number and friction data are combined in a constant pumping power comparision for swirl and straight flow, which indicates that improvement of 2.0 times in the best performance can be obtained with twisted tape-insert tube. A twisted tape-insert tube is recommended in the case of low temperature difference in heat-exchanger.

  • PDF