• Title/Summary/Keyword: Shell type section

Search Result 21, Processing Time 0.025 seconds

Natural frequencies and mode shapes of thin-walled members with shell type cross section

  • Ohga, M.;Shigematsu, T.;Hara, T.
    • Steel and Composite Structures
    • /
    • v.2 no.3
    • /
    • pp.223-236
    • /
    • 2002
  • An analytical procedure based on the transfer matrix method to estimate not only the natural frequencies but also vibration mode shapes of the thin-walled members composed of interconnected cylindrical shell panels is presented. The transfer matrix is derived from the differential equations for the cylindrical shell panels. The point matrix relating the state vectors between consecutive shell panels are used to allow the transfer procedures over the cross section of the members. As a result, the interactions between the shell panels of the cross sections of the members can be considered. Although the transfer matrix method is naturally a solution procedure for the one-dimensional problems, this method is well applied to thin-walled members by introducing the trigonometric series into the governing equations of the problem. The natural frequencies and vibration mode shapes of the thin-walled members composed of number of interconnected cylindrical shell panels are observed in this analysis. In addition, the effects of the number of shell panels on the natural frequencies and vibration mode shapes are also examined.

Study on Heat Transfer Coefficient Test of Evaporator Tube in Shell and Tube Heat Exchanger by Shape (관 형태에 따른 Shell and Tube 열교환기의 열전달계수 관한 연구)

  • Kwon, Jae-Jeong;Park, Jae-Hong;Kim, In-Kwan;Kim, Young-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.1107-1112
    • /
    • 2006
  • The purpose of this study is a heat transfer coefficient test of evaporator tube in shell and tube heat exchanger by shapes, using R-404A. The experimental apparatus is designed to simulate the real heat transfer rate in one shell and tube heat exchanger. The test section is formed four type tubes that are Inner ridged tube, Corrugated tube, Turbo-C tube, Inner fin tube and shell type is formed by electrical heater. All tests were performed at a fixed refrigerant evaporator temperature at $1.5^{\circ}C,\;-3^{\circ}C$ and with mass fluxes of 29, 25 kg/hr. Heat transfer rate is calculated a enthalpy difference in test section. In experiment, heat transfer coefficient measured one by one and electrical heaters are supplemented by evaporator.

  • PDF

Development of a Bellows Finite Element for the Analysis of Piping System (배관시스템 해석을 위한 벨로우즈 유한요소의 개발)

  • 고병갑;박경진;이완익
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.6
    • /
    • pp.1439-1450
    • /
    • 1995
  • Bellows is a familiar component in piping systems as it provides a relatively simple means of absorbing thermal expansion and providing system flexibility. In routine piping flexibility analysis by finite element methods, bellows is usually considered to be straight pipe runs modified by an appropriate flexibility factor; maximum stresses are evaluated using a corresponding stress concentration factor. The aim of this study is to develop a bellows finite element, which similarly includes more complex shell type deformation patterns. This element also does not require flexibility or stress factors, but evaluates more detailed deformation and stress patterns. The proposed bellows element is a 3-D, 2-noded line element, with three degrees of freedom per node and no bending. It is formulated by including additional 'internal' degrees of freedom to account for the deformation of the bellows corrugation; specifically a quarter toroidal section of the bellows, loaded by axial force, is considered and the shell type deformation of this is include by way of an approximating trigonometric series. The stiffness of each half bellows section may be found by minimising the potential energy of the section for a chosen deformation shape function. An experiment on the flexibility is performed to verify the reliability for bellows finite element.

Weight-reduction Prediction for the Conceptual Design of Carbody with Shell Type Sections Using the Material Substitution Technique (쉘형 차체 구조의 소재대체 개념설계에 대한 경량화 예측 기법)

  • Koo, Jeong-Seo;Cho, Hyun-Jik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.4
    • /
    • pp.17-26
    • /
    • 2007
  • In this paper, a theoretical approach is studied to predict structural performances and weight reduction rates of a car-body with shell type sections in case that its materials have to be substituted. For the material substitution design of a car-body, bending, axial and twisting deformations are considered under constant stiffness and strength conditions, which utilize some new indices derived from a structural performance point of view. The developed indices to measure the weight reduction by the material substitution give good guidelines on conceptual design of car-bodies.

A Studyof Materials and Structural Designs in the Glulam Architecture -Focusing in the Roof Structure- (집성재건축의 자재특성과 구조디자인 연구 -지붕구조를 중심으로-)

  • 김란기
    • Korean Institute of Interior Design Journal
    • /
    • no.13
    • /
    • pp.203-215
    • /
    • 1997
  • This Study typed the roof-design in analysis of structural design of the glulam architecture, developed worldwidely, nowaday. For this, it is studied the characters of glulam as the history of glulam architectures, manufacture of glulam, shapes and section of glulam, fireproof and combution of glulam. And it is studied roof-design according to structural type of glulam roof-structure. Conclusively, types of glulam roof design typied as 1)the Simple Beam str., 2)the Multi-Joints continous Beam str. 3)the Hinge str. 4)the Rahmen str. 5)the Archi str. 6)the Grid str. 7)etc str. (Folded-plate str., Radial str., Cylinder Shell str., Ring Dome str., Geodesic Dome str., Conic Coloid Shell str., H.P Shell str. Cantilever Shell str.)

  • PDF

Crush Analysis of a TTX M-Car Design (TTX 구동차 설계안의 충돌압괴특성 분석)

  • Jung Hyun-Seung;Kwon Tae-Soo;Koo Jeong-Seo;Cho Tae-Min
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.616-621
    • /
    • 2004
  • In this paper, the crush characteristics of a tilting train express (TTX) M-car design are evaluated with a head-on collision scenario. Its body shell is divided into three parts - front end, middle section, and rear end. For each part, crush-force relation is evaluated numerically through 3-dimensional shell element analysis with LS-DYNA. TTX's embody structure is a hybrid type structure made of steel and composite materials. Composite sandwich panels are modeled as layered shells whose layers have different material properties. And a damage material model is used to consider the effect of stiffness degradation during deformation. The crush characteristics obtained from these calculations will be used as material modeling data of full-rake collision analyses.

  • PDF

A Study on Opening Analysis of Milling type Tear Seam of Hard IP Invisible PAB Door (Hard IP Invisible PAB 의 밀링타입 Tear Seam 해석 방안 연구)

  • Choi, Y.H.;Lee, K.W.;Ahn, B.J.
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.464-468
    • /
    • 2008
  • In most of the passenger side airbag door in hard type IP today is designed with invisible tear-seam line. In order to design the tear-seam invisible, the tear-seam must be designed with required RWT (residual wall thickness) that is just thick enough to be broken by the PAB pressure on deployment and not by other surrounding impact forces. Hence, keeping the right optimum opening force is very important, and finding the right RWT became the key in designing the tear-seam. The study conducted in this paper describes the search for the optimum RWT around the tear-seam by using finite element method and the optimum RWT is suggested for milling type tear-seam having V-shape cross-section.

  • PDF

Fabrication of Radar Absorbing Shells Made of Hybrid Composites and Evaluation of Radar Cross Section (하이브리드 복합재를 이용한 레이더 흡수 쉘의 제작 및 레이더 단면적 평가)

  • Jung, Woo-Kyun;Ahn, Sung-Hoon;Ahn, Bierng-Chearl;Park, Seoung-Bae;Won, Myung-Shik
    • Composites Research
    • /
    • v.19 no.1
    • /
    • pp.29-35
    • /
    • 2006
  • The avoidance of enemy's radar detection is very important issue in the modem electronic weapon system. Researchers have studied to minimize reflected signals of radar. In this research, two types of radar absorbing structure (RAS), 'C'-type shell and 'U'-type shell, were fabricated using fiber-reinforced composite materials and their radar cross section (RCS) were evaluated. The absorption layer was composed of glass fiber reinforced epoxy and nano size carbon-black, and the reflection layer was fabricated with carbon fiber reinforced epoxy. During their manufacturing process, undesired thermal deformation (so called spring-back) was observed. In order to reduce spring-back, the bending angle of mold was controlled by a series of experiments. The spring-back of parts fabricated by using compensated mold was predicted by finite element analysis (ANSYS). The RCS of RAS shells were measured by compact range and predicted by physical optics method. The measured RCS data was well matched with the predicted data.

An analytical study on behavior of the girder panel in simplified composite deck under construction loadings (가설하중 하에서 초간편 강합성 바닥판 거더패널의 거동에 관한 해석적 연구)

  • Han, Deuk-Cheon;Kim, Sang-Seup;Yoon, Ki-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.6
    • /
    • pp.1537-1542
    • /
    • 2007
  • In this study, based on a I-roll embedded steel composite deck, it is suggested a new type of simplified composite deck and analyzed under construction loading. Using ABAQUS, it's estimated effects of welding amount of steel plate and I-section, existence of a hole of I-section's flange, and a location of hole. For a reasonable verification of modeling, compare Euler-Beam theory with F.E.M models. In result, it is verified that change of welding amount increase more maximum bending tension stresses at the central part's section of span when elements are partial-welded. Also, verify that deflection is slightly increased when a hole existed compared with no hole.

  • PDF

Investigation of elasto-plastic seismic response analysis method for complex steel bridges

  • Tang, Zhanzhan;Xie, Xu;Wang, Yan;Wang, Junzhe
    • Earthquakes and Structures
    • /
    • v.7 no.3
    • /
    • pp.333-347
    • /
    • 2014
  • Multi-scale model can take both computational efficiency and accuracy into consideration when it is used to conduct elasto-plastic seismic response analysis for complex steel bridges. This paper proposed a method based on pushover analysis of member sharing the same section pattern to verify the accuracy of multi-scale model. A deck-through type steel arch bridge with a span length of 200m was employed for seismic response analysis using multi-scale model and fiber model respectively, the validity and necessity of elasto-plastic seismic analysis for steel bridge by multi-scale model was then verified. The results show that the convergence of load-displacement curves obtained from pushover analysis for members having the same section pattern can be used as a proof of the accuracy of multi-scale model. It is noted that the computational precision of multi-scale model can be guaranteed when length of shell element segment is 1.40 times longer than the width of section where was in compression status. Fiber model can only be used for the predictions of the global deformations and the approximate positions of plastic areas on steel structures. However, it cannot give exact prediction on the distribution of plastic areas and the degree of the plasticity.