• Title/Summary/Keyword: Shell powder

Search Result 310, Processing Time 0.027 seconds

Effect of oyster shell powder on nitrogen releases from contaminated marine sediment

  • Khirul, Md Akhte;Kim, Beom-Geun;Cho, Daechul;Yoo, Gilsun;Kwon, Sung-Hyun
    • Environmental Engineering Research
    • /
    • v.25 no.2
    • /
    • pp.230-237
    • /
    • 2020
  • Nitrogen flux release from organically enriched sediments into overlying water, which may have significantly influence on water quality and increasing continuous eutrophication. The purpose of this study is to evaluate the remediation efficiency of oyster shell powder and its treated product into organically enriched sediment in terms of nitrogen flux, organic matter, chlorophyll-a, pH and dissolved oxygen (DO). The TOSP was mainly composed of CaO2. The application of TOSP into the sediment has increased the pH, DO and significantly decreased the concentrations of NH4+-N and T-N compared to other basins. On the other hand, nitrate was enriched with the addition of treated oyster powder, an oxygen releasing compound on both phases. Furthermore, chlorophyll-a was found to be increasing with time in the control basin meanwhile it dropped drastically with the addition of TOSP, which implied on the repression of algal growth owing to blockage of nitrogen source migrating from the sediment. This study has shown that the TOSP was effective to improve sediment-water quality, diminish eutrophication and control harmful algae blooms in a marine environment. Therefore, it is a good reference as an effective environmental remediation agent.

Preparation of NiO Coated YSZ Powder for Fabrication of an SOFC Anode (SOFC 음극 제조를 위한 NiO가 코팅된 YSZ 분말의 합성)

  • Lim, Kwang-Young;Han, In-Dong;Sim, Soo-Man;Park, Jun-Young;Lee, Hae-Won;Kim, Joo-Sun
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.12 s.295
    • /
    • pp.781-787
    • /
    • 2006
  • NiO-coated YSZ powder was prepared using heterogeneous precipitation of Ni hydroxides on YSZ particle surface and high energy milling. The powders were characterized by TG/DTA, XRD, XPS, and SEM. Amorphous Ni precipitate completely decomposed into NiO at $500^{\circ}C$ and the growth of NiO crystallites was constrained by the core particles. Nanocrystalline NiO-coated YSZ core-shell structure powder could be obtained after calcination at $800^{\circ}C$ for 2 h. A core-shell powder compact, due to high sinterability, showed a near theoretical density at $1350^{\circ}C$. After reduction at $900^{\circ}C$, interpenetrating Ni-YSZ microstructure with very uniformly distributed fine Ni and YSZ grains and pores was observed. In contrast, the mechanically mixed oxide sample showed less uniform distribution of pores and larger discontinuous We particles as compared with the core-shell samples.

Evaluation of Antimicrobial Activity of Allyl Isothiocyanate (AITC) Adsorbed in Oyster Shell on Food-borne Bacteria

  • Han, Jung-Ho;Ahmed, Raju;Chun, Byung-Soo
    • Clean Technology
    • /
    • v.21 no.4
    • /
    • pp.241-247
    • /
    • 2015
  • Oyster shells are a waste product from mariculture that creates a major disposal problem in coastal regions of southeast Korea. To make practical use of unused oyster shells, calcined oyster shell (COS) collected from a local company was allowed to adsorb AITC (allyl isothiocyanate), and then tested the powder's ability to inhibit the growth of some potential food borne disease-causing bacteria. COS powder showed bacteriostatic effect that inhibited cell growth of Escherichia coli, Staphylococcus aureus and Salmonella typhimurium from 3 to 5 log10 CFU/mL at concentrations around 1%. The MIC of pure AITC was found as 1 mg/mL, 0.8 mg/mL and 0.7 mg/mL for Escherichia coli, Staphylococcus aureus and Salmonella typhimurium, respectively. The calcined powder adsorbed about 225 mg of AITC per gram of shell, indicating porous material was created by calcination. FTIR data confirmed the adsorption of AITC by COS. Characterization of particle data showed very fine particle size and highly convoluted surface. AITC adsorbed calcined oyster shell (ACOS) completely inhibited bacterial cell at 1% concentration. ACOS showed better antibacterial effect than COS, indicating synergistic effect of AITC and calcined oyster shell powder on bacteria.

Effect of Passivation on the Sintering Behavior of Submicron Nickel Powder Compacts for MLCC Application

  • Jo, Gi-Young;Lee, Kwi-Jong;Kang, Suk-Joong L.
    • Journal of Powder Materials
    • /
    • v.20 no.6
    • /
    • pp.405-410
    • /
    • 2013
  • During sintering of Ni-electrode multi-layer ceramic capacitors (MLCCs), the Ni electrode often becomes discontinuous because of its lower sintering temperature relative to that of $BaTiO_3$. In an attempt to retard the sintering of Ni, we introduced passivation of the Ni powder. To find the optimal passivation conditions, a thermogravimetric analysis (TGA) was conducted in air. After passivation at $250^{\circ}C$ for 11 h in air, a nickel oxide shell with a thickness of 4-5 nm was formed on nickel nanoparticles of 180 nm size. As anticipated, densification of the compacts of the passivated Ni/NiO core-shell powder was retarded: the starting temperature of densification increased from ${\sim}400^{\circ}C$ to ${\sim}600^{\circ}C$ in a $97N_2-3H_2$ (vol %) atmosphere. Grain growth was also retarded during sintering at temperatures of 750 and $1000^{\circ}C$. When the sintering atmosphere was changed from wet $99.93N_2-0.07H_2$ to wet $99.98N_2-0.02H_2$, the average grain size decreased at the same sintering temperature. The conductivity of the passivated powder sample sintered at $1150^{\circ}C$ for 8 h in wet $99.93N_2-0.07H_2$ was measured to be $3.9{\times}10^4S/cm$, which is comparable with that, $4.6{\times}10^4S/cm$, of the Ni powder compact without passivation. These results demonstrate that passivation of Ni is a viable means of retarding sintering of a Ni electrode and hence improving its continuity in the fabrication of $BaTiO_3$-based multi-layer ceramic capacitors.

Synthesis of Metal Oxide-Coated Conductive Metal Powders and Their Application to Front Electrodes for Solar Cells (산화물이 코팅된 전도성 금속 분말의 제조 및 태양전지 전면 전극으로의 응용)

  • Park, Jin Gyeong;Lee, Young-In
    • Korean Journal of Materials Research
    • /
    • v.24 no.9
    • /
    • pp.502-507
    • /
    • 2014
  • Recently, improvement in the conversion efficiency of silicon-based solar cells has been achieved by decreasing emitter doping concentration, because the lightly doped emitter can effectively prevent the recombination of electrons and holes generated by solar light irradiation. This type of emitter is very thin due to the low doping concentration, thus conductive materials (i.e., silver) used for front electrodes can easily penetrate the emitter during a firing process because of their large diffusivity in silicon. This results in junction leakage currents which might reduce cell efficiencies. In this study, $Al_2O_3$-coated Ag powders were synthesized by an ultrasonic spray pyrolysis method and applied to the conductive materials of the front electrode to control the junction leakage current. The $Al_2O_3$ shell obstructs the Ag diffusion into the emitter during the firing process. The powder is spherical with a core-shell structure and the thickness of the $Al_2O_3$ shell is tens of nanometers. Solar cells were fabricated using pure Ag powders or the $Al_2O_3$-coated Ag powder as front electrode materials, and the conversion efficiency and junction leakage current were compared to investigate the role of the $Al_2O_3$ shell during the firing processes.

Synthesis and Characterization of Core-Shell Silica-Phosphor Nanoparticles via Sol-Gel Process (Sol-gel 법을 이용한 코어-쉘 실리카-형광체의 제조 및 특성평가)

  • Shin, Weon Ho;Kim, Seyun;Jeong, Hyung Mo
    • Journal of Powder Materials
    • /
    • v.25 no.1
    • /
    • pp.12-18
    • /
    • 2018
  • Cost-effective functional phosphor nanoparticles are prepared by introducing low-cost $SiO_2$ spheres to rare-earth phosphor ($YVO_4:Eu^{3+}$, $YVO_4:Er^{3+}$, and $YVO_4:Nd^{3+}$) shells using a sol-gel synthetic method. These functional nanoparticles are characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, and general photoluminescence spectra. The $SiO_2$ sphere occupying the interior of the conventional phosphor is advantageous in significantly reducing the cost of expensive rare-earth phosphor nanoparticles. The sol-gel process facilitates the core-shell structure formation; the rare-earth shell phosphor has strong interactions with chelating agents on the surfaces of $SiO_2$ nanoparticles and thus forms layers of several nanometers in thickness. The photoluminescence wavelength is simply tuned by replacing the active materials of $Eu^{3+}$, $Er^{3+}$, and $Nd^{3+}$. Moreover, the photoluminescent properties of the core-shell nanoparticles can be optimized by manipulating the specific contents of active materials in the phosphors. Our simple approach substitutes low-cost $SiO_2$ for expensive rare-earth-based phosphor materials to realize cost-effective phosphor nanoparticles for various applications.

Synthesis of Carbon Coated Nickel Cobalt Sulfide Yolk-shell Microsphere and Their Application as Anode Materials for Sodium Ion Batteries (카본 코팅된 니켈-코발트 황화물의 요크쉘 입자 제조 및 소듐 이온 배터리의 음극 소재 적용)

  • Hyo Yeong Seo;Gi Dae Park
    • Journal of Powder Materials
    • /
    • v.30 no.5
    • /
    • pp.387-393
    • /
    • 2023
  • Transition metal chalcogenides are promising cathode materials for next-generation battery systems, particularly sodium-ion batteries. Ni3Co6S8-pitch-derived carbon composite microspheres with a yolk-shell structure (Ni3Co6S8@C-YS) were synthesized through a three-step process: spray pyrolysis, pitch coating, and post-heat treatment process. Ni3Co6S8@C-YS exhibited an impressive reversible capacity of 525.2 mA h g-1 at a current density of 0.5 A g-1 over 50 cycles when employed as an anode material for sodium-ion batteries. However, Ni3Co6S8 yolk shell nanopowder (Ni3Co6S8-YS) without pitch-derived carbon demonstrated a continuous decrease in capacity during charging and discharging. The superior sodium-ion storage properties of Ni3Co6S8@C-YS were attributed to the pitch-derived carbon, which effectively adjusted the size and distribution of nanocrystals. The carbon-coated yolk-shell microspheres proposed here hold potential for various metal chalcogenide compounds and can be applied to various fields, including the energy storage field.

Investigation of the Korean Traditional Hobun Manufacturing Technique - Centering on Weathering Method - (전통 호분 제조기술 연구 - 풍화방법을 중심으로 -)

  • Kim, Soon-Kwan;Lee, Han-Hyoung;Kim, Ho-Jeong;Jeong, Hye-Young
    • 보존과학연구
    • /
    • s.29
    • /
    • pp.199-220
    • /
    • 2008
  • Hobun(Oyster shell White) is a traditional material used as extender and white pigment from ancient times. The production method of it, however, has been discontinued. We have studied the traditional production method of Hobun by weathering oyster shell, which is one of the traditional ways for preparing Hobun. Reproduction study of manufacturing method of the discontinued traditional material is an important accomplishment of our research. Also this study provides solid background knowledge to stabilize the production and supply of Hobun for the cultural asset repairing materials. The result can be summarized as follows: The production process of Hobun by weathering method takes 5 steps - (1) weathering shells ${\rightarrow}$ (2) washing ${\rightarrow}$ (3) pulverization ${\rightarrow}$ (4) separating fine powder by submerging in water ${\rightarrow}$ (5) drying. The major aim in step (1) is to eliminate organic impurities. In the step (4), the fine particles smaller than $25{\mu}m$ are separated by extracting the supernatant from stirred suspension after heavy particles are submerged. Also, the soluble inorganic impurities can be eliminated through the powder submerge in 15 times water and stirring the suspension 6 hours and changing the water 3~4 times. The final products have high quality with 94.03, 0.52, 2.05 for L, a, b, less than $25{\mu}m$ particle size, fine resistance for discoloration by light and environmental pollution and good workability.

  • PDF

Effects of Subatrates Supplemented with Bioceramic. Crushed Shell and Elvanite on the Growth of Watermelon, Cucumber and Tomato Seedlings. (바이오세라믹, 패화석 및 맥반석의 혼입처리가 수박, 오이 및 토마토의 유묘성장에 미치는 영향)

  • 박순기;김홍기;정순주
    • Korean Journal of Organic Agriculture
    • /
    • v.6 no.1
    • /
    • pp.109-116
    • /
    • 1997
  • This experiment was carried out to examine the effect of various functional materials such as bioceramic podwers, crushed shells and elvanites supplemented to the each substrate on the seedlings growth of cucumber, watermelon and tomato. The seedlings were grown in pots filled with substrates of bioceramic podwers, crushed shell and elvanites. The growth of cucumber seedlings in terms of plant height, stem diameter, leaf width, leaf area, plant fresh and dry weight was promoted by adding the bioceramic. powder (1 to 2g/kg), crushed shells (20 to 80g/kg) or elvanites (20 to 80g/kg). Watermelon seedlings in terms of plant height, number of leaves and leaf area were greater than those of the control by adding bioceramics (1 to 2g/kg). Plant height was also promoted by the adding of bioceramic power from 16 days after treatment. But leaf area was increased from 8 days after treatment, while stem diameter was not affected. Watermelon seedlings were also influenced by adding curshed shells (20 to 80g/kg) and elvanites (20 to 40g/kg) into each substrate. The growth of characteristics of tomato seedlings were promoted by adding 1 to 3g/kg of bioceramics, 10 to 80g/kg of crushed shell or 20 to 40g/kg of elvanites, respectively. Especially, root growth was greatly influenced by bioceramic powder, whereas the shoot growth(leaves and stem) was stimulated by crushed shells and elvanites suppemented into substrate.

  • PDF

Thickness Control of Core Shell type Nano CoFe2O4@SiO2 Structure (두께 조절이 가능한 코어셸 형태의 SiO2 coated CoFe2O4 구조)

  • Yu, Ri;Kim, Yoo-Jin;Pee, Jae-Hwan;Kim, Kyung-Ja
    • Journal of Powder Materials
    • /
    • v.17 no.3
    • /
    • pp.230-234
    • /
    • 2010
  • Homogenous silica-coated $CoFe_2O_4$ samples with controlled silica thickness were synthesized by the reverse microemulsion method. First, 7 nm size cobalt ferrite nanoparticles were prepared by thermal decomposition methods. Hydrophobic cobalt ferrites were coated with controlled $SiO_2$ using polyoxyethylene(5)nonylphenylether (Igepal) as a surfactant, $NH_4OH$ and tetraethyl orthosilicate (TEOS). The well controlled thickness of the silica shell was found to depend on the reaction time and the amount of surfactant used during production. Thick shell was prepared by increasing reaction time and small amount of surfactant.