• Title/Summary/Keyword: Shell Mode Vibration

Search Result 138, Processing Time 0.024 seconds

Observation of Strong In-plane End Vibration of a Cylindrical Shell

  • Kil, Hyun-Gwon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.4E
    • /
    • pp.183-188
    • /
    • 2002
  • In this paper, the strong in-plane vibration has been experimentally observed at the end of a finite cylindrical shell. The strong in-plane vibration was generated by the evanescent wave field, which was excited along about half the length of the shell. The evanescent waves were generated due to mode conversion of elastic waves at the ends of the cylindrical shells. The results show that the strong in-plane end vibration can be generated in cylindrical shells.

STUDY OF CORE SUPPORT BARREL VIBRATION MONITORING USING EX-CORE NEUTRON NOISE ANALYSIS AND FUZZY LOGIC ALGORITHM

  • CHRISTIAN, ROBBY;SONG, SEON HO;KANG, HYUN GOOK
    • Nuclear Engineering and Technology
    • /
    • v.47 no.2
    • /
    • pp.165-175
    • /
    • 2015
  • The application of neutron noise analysis (NNA) to the ex-core neutron detector signal for monitoring the vibration characteristics of a reactor core support barrel (CSB) was investigated. Ex-core flux data were generated by using a nonanalog Monte Carlo neutron transport method in a simulated CSB model where the implicit capture and Russian roulette technique were utilized. First and third order beam and shell modes of CSB vibration were modeled based on parallel processing simulation. A NNA module was developed to analyze the ex-core flux data based on its time variation, normalized power spectral density, normalized cross-power spectral density, coherence, and phase differences. The data were then analyzed with a fuzzy logic module to determine the vibration characteristics. The ex-core neutron signal fluctuation was directly proportional to the CSB's vibration observed at 8Hz and15Hzin the beam mode vibration, and at 8Hz in the shell mode vibration. The coherence result between flux pairs was unity at the vibration peak frequencies. A distinct pattern of phase differences was observed for each of the vibration models. The developed fuzzy logic module demonstrated successful recognition of the vibration frequencies, modes, orders, directions, and phase differences within 0.4 ms for the beam and shell mode vibrations.

Analysis of mechanical properties of microtubules under combined effects of surface and body forces for free and embedded microtubules in viscoelastic medium

  • Farid, Khurram;Taj, Muhammad
    • Advances in concrete construction
    • /
    • v.13 no.3
    • /
    • pp.255-264
    • /
    • 2022
  • Vibration is expected to occur in microtubules as tubular heterodimers. They oscillate like electric dipoles. Several research studies have estimated a frequency of vibration using the orthotropic model, a beam or rod like models and shell models, considering the surface forces. The effects of body forces on the dynamics of the microtubules were not yet taken into account. This study seeks to capture the body force effects on the vibration modes generated and on the corresponding frequency for microtubules. An orthotropic elastic shell model for the structural details of microtubules is used for the analysis. The tests are conducted out for microtubules, exposed to electro-magnetic and gravitational forces, the transverse vibration, radial mode vibration, and axial mode of vibration have accomplished. We therefore, evaluate and compare microtubules' frequencies with prior results of vibration frequency without the effects of body force.

Beat Maps of King Song-Dok Bell (성덕대왕신종의 맥놀이 지도)

  • Kim, Seock-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.498-504
    • /
    • 2002
  • Vibration beat phenomenon is theoretically investigated on a slightly asymmetric cylindrical shell, which is a simplified model of Korean bell. Mode pairs of the slightly asymmetric shell are obtained by receptance analysis and impulse response of the shell is derived using modal expansion and Laplace transform. Based on the impulse response model, beat mapping method is proposed to explain the reason that the beat of a bell vibration shows periodic distribution on the circumference. Beat characteristics of King Song-Dok Bell are explained in detail using the beat map and the measured modal data.

  • PDF

Vibration Analysis of Ring Stiffened Cylindrical Shells with a Rectangular Cutout (사각개구부를 갖는 링보강 원통셸의 진동해석)

  • Kim, Yeong-Wan;Lee, Yeong-Sin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.11 s.170
    • /
    • pp.2040-2049
    • /
    • 1999
  • The Rayleigh-Ritz method is used to investigate the natural frequencies and mode shapes of the ring stiffened cylindrical shells with a rectangular cutout. The cutout is located on the center of the shell. The Love's thin shell theory combined with the discrete stiffener theory is adopted to formulate the analytical model of the shell. The effect of stiffener eccentricity, number, and position on vibration characteristics of the shell is examined. Also the effect of cutout size is examined. By comparison with previously published analytical and new FEM results, it is shown that natural frequencies and mode shapes can be determined with adequate accuracy.

Active Vibration Control Experiment on Cylindrical Shell equipped with MFC Actuators (MFC 작동기를 이용한 실린더 쉘의 능동진동제어 실험)

  • Bae, Byung-Chan;Jung, Moon-San;Kwak, Moon-K.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.457-462
    • /
    • 2006
  • This paper is concerned with the active vibration control experiment on cylindrical shell equipped with Macro Fiber Composite(MFC) actuators. The MFC actuators were glued to the cylindrical shell in circumferential directions. To verify the theoretical result, vibration test using impact hammer and accelerometer was carried out. It was found from experiments that theoretical result predicts experimental result to some extent. The positive position feedback controllers were designed and applied to the test article. It was observed that the resonant amplitude of the fundamental mode was reduced by 20dB thus achieving active vibration control. The active vibration control of the response subject to non resonant excitation has been of interest. We developed the combination of the positive position feedback controller which can cope with the fundamental mode and the positive position feedback controller which can counteract the external disturbance with non resonant frequency. It was found from experiments that the hybrid controller can suppress the vibration amplitude successfully.

  • PDF

Active vibration control of nonlinear stiffened FG cylindrical shell under periodic loads

  • Ahmadi, Habib;Foroutan, Kamran
    • Smart Structures and Systems
    • /
    • v.25 no.6
    • /
    • pp.643-655
    • /
    • 2020
  • Active control of nonlinear vibration of stiffened functionally graded (SFG) cylindrical shell is studied in this paper. The system is subjected to axial and transverse periodic loads in the presence of thermal uncertainty. The material composition is considered to be continuously graded in the thickness direction, also these properties depend on temperature. The relations of strain-displacement are derived based on the classical shell theory and the von Kármán equations. For modeling the stiffeners on the cylindrical shell surface, the smeared stiffener technique is used. The Galerkin method is used to discretize the partial differential equations of motion. Some comparisons are made to validate the SFG model. For suppression of the nonlinear vibration, the linear and nonlinear control strategies are applied. For control objectives, the piezoelectric actuator is attached to the external surface of the shell and the thin ring piezoelectric sensor is attached to the middle internal surface of shell. The effect of PID, feedback linearization and sliding mode control on the suppression of vibration for SFG cylindrical shell is presented.

Vibration of mitred and smooth pipe bends and their components

  • Redekop, D.;Chang, D.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.6
    • /
    • pp.747-763
    • /
    • 2009
  • In this work, the linear vibration characteristics of $90^{\circ}$ pipe bends and their cylindrical and toroidal shell components are studied. The finite element method, based on shear-deformation shell elements, is used to carry out a vibration analysis of metallic multiple $90^{\circ}$ mitred pipe bends. Single, double, and triple mitred bends are considered, as well as a smooth bend. Sample natural frequencies and mode shapes are given. To validate the procedure, comparison of the natural frequencies is made with existing results for cylindrical and toroidal shells. The influence of the multiplicity of the bend, the boundary conditions, and the various geometric parameters on the natural frequency is described. The differential quadrature method, based on classical shell theory, is used to study the vibration of components of these bends. Regression formulas are derived for cylindrical shells (straight pipes) with one or two oblique edges, and for sectorial toroidal shells (curved pipes, pipe elbows). Two types of support are considered for each case. The results given provide information about the vibration characteristics of pipe bends over a wide range of the geometric parameters.

Study On the End Vibration of a Cylindrical Shell (원통셸의 끝단 진동에 대한 연구)

  • Lee, J.Y.;Kil, H.G.;Lee, C.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1321-1324
    • /
    • 2007
  • In this paper, the in-plane end vibration of a cylindrical shell has been analyzed. The theoretical result has showed that the strong in-plane vibration at the ends of the cylindrical shell can be generated by the evanescent wave field, which is excited along about half the length of the shell. This has been also observed from experimental result. The evanescent waves are generated due to mode conversion of elastic waves at the ends of the cylindrical shells. The results show that the strong in-plane end vibration can be generated in cylindrical shells.

  • PDF

Vibro-acoustic Characteristics of a Cylindrical Shell Type Gearbox Models by Helical Gear Excitation (헬리컬기어 가진에 의한 원통형 기어박스 모델의 진동음향 특성)

  • Park, Chan IL
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.27 no.1
    • /
    • pp.36-42
    • /
    • 2017
  • Helical gear excitation is transmitted to a gearbox through the shafts and bearings and the vibration of the gearbox radiates the noise in the air. Therefore gearbox modeling is essential to evaluate the gear noise. This work deals with vibration and acoustic analysis of a cylindrical shell-type gearbox with/without holes excited by helical gears and focuses on the development of the simple gearbox model. To do so, helical gears and bearing forces are calculated. Gearbox with/without holes is modeled by the aluminum end plates and PMMA cylindrical shell body. The vibration mode and the forced harmonic response were calculated by the commercial FE software and the end plate of the gearbox is more contributed to vibration than the body. Acoustic analysis was also conducted by the commercial acoustic software and a cylindrical shell type gearbox with/without holes has the similar vibro-acoustic characteristics.