• Title/Summary/Keyword: Sheet weld

Search Result 180, Processing Time 0.023 seconds

The Low Cycle Fatigue behavior of Laser Welded Sheet Metal (박판형 레이저 용접재의 저주기 피로 특성)

  • 김웅찬;곽대순;김석환;오택열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1025-1028
    • /
    • 2004
  • In this paper, we studied low cycle fatigue behavior of laser welded sheet metal that used automobile body panel. Specimens were manufactured as weld condition and sheet metal using automobile manufacturing company at present. For to know mechanical properties, micro Vicker's hardness test was performed of specimens. But, we can't confirm mechanical properties of weld bead and heat affected zone because laser weld makes very narrow weld bead and heat affected zone than other welding method. Therefore, we performed low cycle fatigue test with similar weldment, dissimilar weldment, similar thickness and dissimilar weldment, and dissimilar thickness and dissimilar weldment for fatigue properties of thickness and welding direction. As well, we analysis stress distribution of base metal, weld bead, and heat affected zone according to strain load using finite element method.

  • PDF

Welding Characteristics of Aluminized Steel Sheet by Nd:YAG Laser(II) - Behavior of Al element in the weld - (Nd:YAG 레이저를 이용한 알루미늄도금강판의 용접성(II) - 용접부내 알루미늄의 거동 -)

  • Kim, Jong-Do;Lee, Jung-Han;Kim, Ki-Chol
    • Journal of Welding and Joining
    • /
    • v.25 no.4
    • /
    • pp.72-78
    • /
    • 2007
  • Aluminized steel sheet is a material with excellent heat resistance, thermal reflection and corrosion resistance. It has wide applications, owing to its low cost and excellent performance, in the petrochemical industry, electric power and other energy conversion systems, etc and has attracted the attention of many investigators. But the welding of aluminized steel sheet has a problem of decreasing tensile-shear strength, caused by mixed Al in the weld. This study investigated behavior of Al and its structural properties to resolve this problem. Several analysis equipment(SEM, EDX, EPMA) were used to investigate Al element in the weld. Also microhardness tester and TEM equipment were used to find the intermetallic compound. As a result of this study, Al-rich zones existed in the weld and Fe-Al intermetallic compounds were found in these zones. At the same time, the weldability of aluminized stainless steel sheet was investigated and compared with that of aluminized steel sheet. Although there is a difference between the base metal of the low carbon steel and stainless steel, it is interpreted that a behavior of Al element in the weld is similar.

Evaluation on Resistance Spot Weldability and Nugget Formation of Surface Roughness Treated Steel Sheet (표면조도 특성에 따른 저항 점 용접성 평가 및 너깃 형성 고찰)

  • Kim, Ki-Hong;Choi, Yung-Min;Kim, Young-Seok;Rhym, Young-Mok;Yu, Ji-Hun;Kang, Nam-Hyun;Park, Yeong-Do
    • Journal of Welding and Joining
    • /
    • v.26 no.5
    • /
    • pp.79-89
    • /
    • 2008
  • With the increased use of surface textured steel sheet in body-in-white assembly, resistance spot weldability of these steels is considered to be an important subject. This study evaluated nugget formation and weldability by measuring dynamic resistance with various weld pressure, current, and weld time for steel sheet with two different surface roughnesses. The surface roughness for T-H steel ($R_{a}=1.70\;{\mu}m$) was higher than that for T-L steel ($R_{a}=1.33\;{\mu}m$), and resulted in increased contact resistance and heating for T-H steel spot welding. Therefore, at low weld current and weld cycle ranges, the T-H steel showed better weldability over the T-L steel. The evaluations of weld interface showed that the fusion zone in the T-H steel sheet was continuous in contrast to discontinuous fusion zone for T-L steel sheet at the same welding conditions. A comparison of dynamic resistance and tensile-shear strength (TSS) between T-H and T-L steel sheet suggested that high surface roughness provided larger heating at early cycle of welding and larger TSS.

Forming Characteristics of Laser Welded Tailored Blanks (레이저 용접 테일러드 블랭크의 성형특성)

  • 박기철;한수식;김광선;권오준
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.06a
    • /
    • pp.121-130
    • /
    • 1998
  • In order to analyze the forming characteristics of laser welded tailored blanks, laser welded blanks of different thickness and strength combinations were prepared and tensile, stretching, stretch flanging and deep drawing tests were done. The tensile elongation perpendicular to the weld line, stretching and stretch flanging formability decreased with increasing the deformation restraining force (strength ${\times}$ thickness) ratio between two welded sheets. The tensile elongation along weld line reached a value above 90% of the single sheet's elongation. Stretch flanging formability was reduced to approximately 10% of the single sheet value when the deformation restraining force ratio between two welded sheets was increased to two. Weld line movement of deep drawing test specimens was also affected by the strength ratio of the combined sheets, the weld line location and forming conditions. In all forming modes of tailored blanks, excessive weld line movement resulted from strain concentrations at the weaker sheet and resulted in fracture of the weaker side.

A Study on Automatic Seam Tracking System Using Electro-Magnetic Sensor for Sheet Metal Arc Welding of Butt Joints (박판 맞대기 용접에서 전자기식 센서를 이용한 용접선 자동 추적 시스템에 관한 연구)

  • 유병희;김재웅
    • Journal of Welding and Joining
    • /
    • v.15 no.1
    • /
    • pp.81-91
    • /
    • 1997
  • In this study, a magnetic sensor to make use of eddy current was developed to detect the weld seam of butt joint in the sheet metal arc welding. This system consist of the sensor device for detecting the weld line, the servo control device for driving the weld torch movement and the control unit. A signal processing was applied to smooth the output signal of the sensor. The weld joint was determined by using a 1st order differential method. To improve tracking accuracy of the system, moving average method which has an effect of proportional and weighted integral control was applied to a series of the weld joint positions obtained above. The weld line for tracking was generated by using data regeneration algorithm. Based on these results, each servo motor was controlled by pulse generator. From experimental results, it was revealed that this system has excellent detecting ability for weld line and seam tracking ability.

  • PDF

Electron beam weldability of Niobium (니오븀의 전자빔 용접성)

  • An, Byung-Hun;Yoon, Jong-Won;Kim, Sook-Hwan
    • Laser Solutions
    • /
    • v.11 no.2
    • /
    • pp.15-19
    • /
    • 2008
  • Electron beam (EB) weldability of pure grade Nb sheet was studied. One of Nb sheets was as-annealed and the other was cold rolled. Microstructures, Vickers hardness, and transverse weld tensile test were carried out for the base metal, the heat affected zone (HAZ) and weld metal. In the case of the EB welds made using the annealed Nb sheeet, fine equiaxed grains and coarse grains were dominant at the base metal and the HAZ, respectively, and columnar grains were observed at the weld metal. For the EB welds made using the cold rolled Nb sheet, elongated grains in the rolling direction at the base metal, and the microstructures of the weld metal and the HAZ are similar to those of the EB welds made using the annealed Nb sheet, respectively. For both annealed and cold rolled Nb sheet, the width of the HAZs are unusually wide in spite of using high density heat source, i.e. electron beam, and the grain sizes of both HAZs are similar. When tensile test was carried out using the transverse weld specimens, the failure occurred at the HAZ for both EB welds made using Nb sheets annealed and cold rolled, respectively and the tensile strengths of both specimens were 161MPa. Vickers hardness of EB welds made using annealed Nb was 56-57 Hv at both base metal and weld metal, 52-53 Hv at the HAZ. On the other hand, Vickers hardness of EB welds made using cold rolled Nb was 97-99 Hv at the base metal, but the hardness values of weld metal were similar to those obtained at the weld metal of annealed Nb.

  • PDF

$CO_2$ Weldability of Zn Coated Steel Sheet(1) - Weld Defects and Its Characteristics in Welds - (아연도금강판의 $CO_2$ 용접특성(1) - 용접부 결함의 종류와 특성 -)

  • 이종봉;안영호;박화순
    • Journal of Welding and Joining
    • /
    • v.18 no.1
    • /
    • pp.91-96
    • /
    • 2000
  • Characteristics of the weld defect, such as a blowhole and a pit in lap-jointed fillet Co₂ welds of Zn-coated steel sheet were studied in order to make clear the sequence of the blowhole formation during welding. Main conclusions obtained are as follows: 1) Blowhole, wormhole and pit were found in fillet welds, although the optimum welding condition of 200A-23V-100cm/min was applied. 2) Zn was only detected at the solidification boundary at the early stage of the blowhole formation. 3) Most of the blowholes was started to form at lap-joint by the Zn vapor. With increasing of the Zn vapor and its pressure, the blowhole was develope to th bed surface until the completion of weld solidification. 4) The behavior of the blowhole in growth was similar to that of the columnar dendrite during welding.

  • PDF

Effect of a Single Applied Overload on Fatigue Crack Growth Behavior in Laser-welded Sheet Metal

  • Kwak Dai-Soon;Kim Seog-Hwan;Oh Taek-Yul
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.3
    • /
    • pp.30-34
    • /
    • 2006
  • We investigated fatigue crack growth behavior in laser-welded sheet metal caused by a single applied overload The fatigue specimens were made using butt jointed cold rolled sheet metal that was welded with a $CO_2$ laser, The effects of the specimen thickness and overload ratio were determined from fatigue crack propagation tests, These tests were performed in such a way that the fatigue loading was aligned parallel to the weld line while the crack propagated perpendicular to the weld line, Overload ratios of 1.0, 1.5, and 2. 0 were applied near the tip of the fatigue crack at points located 6, 4, and 2 mm from the weld line. The specimens were either 0.9 or 2.0 mm thick. The size of the plastic zone at the crack tip due to the single applied overload was also determined using finite element analysis.

The Resistance Spot Weldability of surface roughness textured cold-rolled steel sheet (표면조도처리 강판의 점용접성에 관한 고찰)

  • Kim, Gi-Hong;Park, Sang-Sun;Park, In-Cheol;Kim, Seong-Won;Sin, Byeong-Hyeon;Choe, Yeong-Min;Park, Yeong-Do
    • Proceedings of the KWS Conference
    • /
    • 2007.11a
    • /
    • pp.342-344
    • /
    • 2007
  • The resistance spot weldability of surface textured cold-rolled steel sheet was evaluated. One steel sheet(T4.5) showed reduced electrode life with less than 2000 welds, and all other steel sheets(E2.2, E4.5, T2.2) made more than 2500 welds. The carbon imprint test revealed that there is sudden electrode diameter increase around 1700 welds. It is believed that the increased electrode diameter decreased current density, and resulted in decreasing weld electrode life due to small weld button size. It is considered that surface roughness difference may attribute to heating during weld cycle and reduced the weld electrode life.

  • PDF

Representation of Spatial Relationships for Sheet Metal Weld Assemblies Modeling (박판 용접구조물의 모델링을 위한 공간관계 표현)

  • 김동원;김경윤
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.400-404
    • /
    • 1997
  • This paper presents spatial relationshaps and engineering features for the feature based modeling of Sheet Metal Weld Assemblies (SMWA) that are made of sheet metal components through are welding processes. Spatial relationships in ProMod-S, a sheet metal product modeler,are further extended for the SMWA modeling. Some spatial relationships for special weld joint types are newly introduced. The geometrical and topological relations between spatial reationship, mating features, and assembly features are defined. Finally, assembly data stucturess for the product modeling of SMWA are proposed. They are an engineering relation to represent the constraints between component features, and a mating bond to integrate component design information.

  • PDF