• Title/Summary/Keyword: Sheet Resistivity

Search Result 193, Processing Time 0.018 seconds

Synthesis of Reduced Graphene-metal Hybrid Materials via Ion-exchange Method and its Characterization (이온교환법에 의한 환원 그래핀-금속 하이브리드 소재의 합성 및 특성)

  • Park, Aeri;Kim, Sumin;Kim, Hyun;Han, Jong Hun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.25-37
    • /
    • 2020
  • In this study, hybridization of graphene oxide and metal was carried out by the functional groups containing oxygen and thermal treatment for reduction in order to enhance the electrical conductivity and magnetic properties of graphene materials. Graphene-metal hybrid materials were synthesized using the oxygen-containing functional groups (-OH, -COOH and so on) on the surface of graphene oxide by replacing them with metal ions via ion exchange method as well as thermal reduction. The metals used in this study were Fe, Ag, Ni, Zn, and Fe/Ag, and it was confirmed that metal particles of uniform size were well dispersed on the graphene surface through SEM, TEM, and EDS. All of the metal particles on the graphene surface had an oxide-crystalline structure. To check the electrical properties, sheet resistance of the rGO-metal hybrid sample was measured on the PET film made by the dip-coating, and the specific resistance was calculated by measuring the thickness of the specimen through SEM. As a result, the specific resistance was in the range of 2.14×10-5 and 3.5×10-3 ohm/cm.

Influence of the RF Power on the Optical and Electrical Properties of ITZO Thin Films Deposited on SiO2/PES Substrate (RF파워가 SiO2/PES 기판위에 증착한 ITZO 박막의 광학적 및 전기적 특성에 미치는 효과)

  • Choi, Byeong-Kyun;Joung, Yang-Hee;Kang, Seong-Jun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.3
    • /
    • pp.443-450
    • /
    • 2021
  • After selecting a PES substrate with excellent thermal stability and optical properties among plastic substrates, a SiO2 thin film was deposited as a buffer layer to a thickness of 20nm by plasma-enhanced chemical vapor deposition to compensate for the high moisture absorption. Then, the ITZO thin film was deposited by a RF magnetron sputtering method to investigate electrical and optical properties according to RF power. The ITZO thin film deposited at 50W showed the best electrical properties such as a resistivity of 8.02×10-4 Ω-cm and a sheet resistance of 50.13Ω/sq.. The average transmittance of the ITZO thin film in the visible light region(400-800nm) was relatively high as 80% or more when the RF power was 40 and 50W. Figure of Merits (ΦTC and FOM) showed the largest values of 23.90×10-4-1 and 5883 Ω-1cm-1, respectively, in the ITZO thin film deposited at 50W.

Flexible Planar Heater Comprising Ag Thin Film on Polyurethane Substrate (폴리우레탄 유연 기판을 이용한 Ag 박막형 유연 면상발열체 연구)

  • Seongyeol Lee;Dooho Choi
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.1
    • /
    • pp.29-34
    • /
    • 2024
  • The heating element utilizing the Joule heating generated when current flows through a conductor is widely researched and developed for various industrial applications such as moisture removal in automotive windshield, high-speed train windows, and solar panels. Recently, research utilizing heating elements with various nanostructures has been actively conducted to develop flexible heating elements capable of maintaining stable heating even under mechanical deformation conditions. In this study, flexible polyurethane possessing excellent flexibility was selected as the substrate, and silver (Ag) thin films with low electrical resistivity (1.6 μΩ-cm) were fabricated as the heating layer using magnetron sputtering. The 2D heating structure of the Ag thin films demonstrated excellent heating reproducibility, reaching 95% of the target temperature within 20 seconds. Furthermore, excellent heating characteristics were maintained even under mechanically deforming environments, exhibiting outstanding flexibility with less than a 3% increase in electrical resistance observed in repetitive bending tests (10,000 cycles, based on a curvature radius of 5 mm). This demonstrates that polyurethane/Ag planar heating structure bears promising potential as a flexible/wearable heating element for curved-shaped appliances and objects subjected to diverse stresses such as human body parts.