• Title/Summary/Keyword: Sheet Material

Search Result 1,575, Processing Time 0.037 seconds

Study on relation of transmittance characteristics and efficiency for Photovoltaic Module (태양광 모듈의 투과특성과 효율과의 연관성에 대한 연구)

  • Jung, In-Sung;Jung, Eun-Suk;Kim, Jung-Gun;Lee, Bum-Su;Kim, Chong-Yeal;Kim, Chul-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.453-453
    • /
    • 2009
  • Wafer 태양전지와 Back sheet 및 기타 소재를 사용하는 기존의 Photovoltaic Module은 투과성이 존재하지 않으므로 본 논문에서는 태양전지 모듈의 투과특성을 발휘할 수 있는 Glass to Glass (GtG) Type의 Photovoltaic module에 대해 그 투과 특성 및 효율과의 관계를 분석하였다. 먼저 Module용 소재 중 Poly vinyl butyral (PVB) 및 Ethylene vinyl acetate(EVA) sheet의 Transmittance와 Haze 특성을 분석하였다. GtG 타입의 Photovoltaic Module은 약 90%정도의 투과율을 갖는 강화유리 및 Haze가 없는 PVB sheet를 사용하여 1m $\times$ 1m 크기로 제작하였다. GtG 타입으로 제조한 모둘 중 Cell 16EA를 사용한 모듈은 Cell 25EA를 사용한 모듈에 비해서 36% 투과율이 증가하였으나 효율 면에서 38%감소하였다. 최종적으로 GtG 타입 Module의 효율과 투과율에 관련된 식을 각각 정립하였다.

  • PDF

A Study on Material Characterization of SMC (SMC의 물성치 평가에 관한 연구)

  • 정진호;한영원;임용택
    • Transactions of Materials Processing
    • /
    • v.4 no.3
    • /
    • pp.245-256
    • /
    • 1995
  • SMC(Sheet Molding Compound), a thermoset composite material which consists of unsaturated polyester resin, fiberglass strands, fillers, and various chemical additives for curing agent, has been widely used in fabrication of structural components. The mechanical properties of molded SMS parts are strongly dependent on material flow results during compression molding process, while such flow in molds is affected by material characteristics. For numerical simulation of SMC molding process, estimation of material property of SMC must be accomplished. In this study, flow resistance of SMC was estimated through a simple compression test using a lubricant with grease oil under the constant strain rate condition at various temperatures and the result was compared with other material data available in the literature. The accuracy of the experimentally determined flow resistance was tested by finite element analyses of compression molding of SMC. Simulation results were compared with experimental results under the plane strain condition.

  • PDF

A Study on the Clad Sheet Metal of the Warm Drawability (SUS-Al-Mg이종판재의 드로잉성형에 관한 연구)

  • Lee, Y.S.;Jung, T.W.;Kwon, Y.N.;Lee, J.H.;Choi, S.W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.71-74
    • /
    • 2008
  • The clad sheet is the sheet metal that joined the one or more material with the different property by rolling process. In this study, it is investigated about the mechanical property or formability of SUS-Al-Mg clad sheet. The clad sheet was formed at elevated temperature because of their poor formability at room temperature. The tensile test was confirmed at various temperature and the reduction of strain rate above $250^{\circ}C$. LDR(Limited Drawing Ratio) was obtained through deep drawing test to confirm the formability of the clad sheet. The FE analysis is performed to compare prototype products.

  • PDF

Finite Element Analysis for the Hydroforming Process of Sheet Metal Pairs (박판쌍 하이드로포밍 공정의 유한요소해석)

  • Kim J.;Chang Y. C.;Ok C. S.;Kang B. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.40-43
    • /
    • 2001
  • The use ef sheet material for the hydroforming of a closed hollow body out of two sheet metal blanks is a new class of hydroforming process. By using a three-dimensional finite element program, called HydroFORM-3D, the hydroforming process of sheet metal pairs is analyzed. Also the comparison of conventional deep-drawing and hydroforming process was conducted. The simulation has concentrated on the influences of the various forming conditions, such as the unwelded or welded sheet metal pairs and friction condition, on the hydroforming process. This computational approach can prevent time-consuming trial-and-error in designing the expensive die sets and hydroforming process of sheet metal pairs.

  • PDF

Damping Properties of the Spray Type Vibration Reduction Material for the Use of the Automotive Interior Parts (자동차 내장용 분무형 제진재의 제진특성)

  • 윤주호;윤여성;김영명;김의용;김종수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.138-146
    • /
    • 2002
  • The new type of vibration reduction material far an automotive interior, which is spray-type liquid material, is developed in this study The new material has better damping property and lower mass density than other damping materials, for example asphalt sheet. It can be sprayed by an automatic robot, so it is expected to improve productivity and cut down manpower. And it solves a poor adhesion problem and makes an automotive to be lightweight by optimizing spray process. So, It is a next generation automotive vibration reduction material. In this paper, the chemical process for making the new damping materials is described. And then, the damping properties of the vibration reduction materials are analyzed by modal testing of damping treatment specimens. The new vibration reduction materials have good damping properties than asphalt sheet in the experimental results.

Elastic-Plastic Implicit Finite Element Method Considering Planar Anisotropy for Complicated Sheet Metal Forming Processes (탄소성 내연적 유한요소법을 이용한 평면 이방성 박판의 성형공정해석)

  • Yun, Jeong-Hwan;Kim, Jong-Bong;Yang, Dong-Yeol;Jeong, Gwan-Su
    • Transactions of Materials Processing
    • /
    • v.7 no.3
    • /
    • pp.233-245
    • /
    • 1998
  • A new approach has been proposed for the incremental analysis of the nonsteady state large deformation of planar anisotropic elastic-plastic sheet forming. A mathematical brief review of a constitutive law for the incremental deformation theory has been presented from flow theory using the minimum plastic work path for elastic-plastic material. Since the material embedded coordinate system(Lagrangian quantity) is used in the proposed theory the stress integration procedure is completely objective. A new return mapping algorithm has been also developed from the general midpoint rule so as to achieve numerically large strain increment by successive control of yield function residuals. Some numerical tests for the return mapping algorithm were performed using Barlat's six component anisotropic stress potential. Performance of the proposed algorithm was shown to be good and stable for a large strain increment, For planar anisotropic sheet forming updating algorithm of planar anisotropic axes has been newly proposed. In order to show the effectiveness and validity of the present formulation earing simulation for a cylindrical cup drawing and front fender stamping analysis are performed. From the results it has been shown that the present formulation can provide a good basis for analysis for analysis of elastic-plastic sheet metal forming processes.

  • PDF

An Analysis of Dent Formation by Dynamic Finite Element Method (동적 유한요소해석을 이용한 Dent 발생에 대한 연구)

  • Cha, Sung-Hoon;Shin, Myoung-Soo;Kim, Jong-Bong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.58-65
    • /
    • 2010
  • For the improvement of fuel consumption, the study on the use of lightweight material or thinner sheet have been carried out in automotive industry. With the need for the use of thinner sheet, the dent resistance became one of the major concern in th design of exterior panels in automotive industry. Many studies have been carried out for the dent resistance by experiment or quasi-static numerical simulation. In this study, the dent formation behavior is investigated by dynamic finite element analysis using ABAQUS. Dent formation may be affected by many factors such as sheet thickness, material properties, pre-strain, and sheet curvature. The effect of these factors on dent resistance is investigated. From the analysis following three conclusions are derived. First, dent resistance become hard as the sheet curvature radius increases. Second, dynamic dent resistance is mainly affected by bending stress rather than tensile stress. Third, the pre-strain itself do not give any guidance for dynamic dent resistance and dynamic dent resistance have to be decided considering the strain hardening and thickness reduction together. The results are considered to be reliable and useful to improve the dent damage of automotive panels.

DESIGN OF ADHESIVE BONDED JOINT USING ALUMINUM SANDWICH SHEET

  • PARK Y.-B.;LEE M.-H.;KIM H.-Y.;OH S.-I.
    • International Journal of Automotive Technology
    • /
    • v.6 no.6
    • /
    • pp.657-663
    • /
    • 2005
  • Recently, weight reduction of vehicles has been of great interest, and consequently the use of composite materials in the automotive industry is increasing every year. Composite sandwich panels which consist of two skins and core materials are replacing steels in automotive floor and door. The substitution of one material for another is accompanied by change of joining method, so that adhesive bonding has been popularly used for joining method of composite materials. In the case of adhesive bonding of composite materials, there could be loss in the joint strength by delamination of two faceplates or cracking on faceplate. Thus, it is necessary to prevent loss in the joint strength by designing the joint geometry. In the present paper, adhesive bonding of aluminum sandwich sheet was tried. For understanding joint behavior, studies on stresses in the single lap joint were reviewed and failure modes of composite material were analyzed. Strength tests on the single lap joint consisting of aluminum sandwich sheet and steel were performed and variation of the joint strength with the joint configuration was shown. Based on these results, design guide of adhesive bonding in aluminum sandwich sheet was suggested.

Welding Characteristics of Lap-Joint Hastelloy C-276 Sheet Metal Using Nd:YAG Laser (Nd:YAG 레이저를 이용한 하스텔로이 박판의 겹치기 이음 용접 특성)

  • Kim, Chan Kyu;Jung, Yoon Gyo;Cho, Young Tae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.8
    • /
    • pp.681-685
    • /
    • 2015
  • Hastelloy C-276 composed of Cr, Mo, and Ni is a versatile, corrosion-resistant alloy with numerous industrial applications including its use in nuclear reactors, general chemical plants, and as a superconducting base material. Of especial significance, it can be used as a thin-sheet type whereby lap-joint welding is occasionally necessary. The main welding problems for thin-sheet metals are deformation and burn-through from an excessive heat input. Laser welding can minimize these problems because it has a high energy density and low heat effect on the base material. In this study, the laser-welding characteristics of lap-joint Hastelloy C-276 sheet metal were determined. The criteria of the laser-welding variables were chosen using a heat-conduction analysis, and the optimal welding parameters were selected by experimenting with an Nd:YAG laser.

Causes of Asphalt Waterproofing Membrane Dissolution due to the Addition of the Solvent in Hybrid Water-proofing System (복합방수공법에 있어서 용제 첨가에 따른 아스팔트층 용해원인에 관한 연구)

  • Kim, Dong-Bum;Seo, Hyun-Jae;Song, Je-Young;Kwak, Kyu-Sung;Bae, Kee-Sun;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2010.05a
    • /
    • pp.53-56
    • /
    • 2010
  • In this study, we conducted an impact assessment of the amount of volatile organic solvents addition on hybrid water-proofing system of urethane waterproof coating material and modified asphalt sheet. Also, we conducted a comparative assessment of whether modified asphalt sheet is dissolved or not and oil leakage by dissolution in order to perform a comparative analysis of characteristics of the impact on modified asphalt sheet according to the volatility of volatile organic solvents included in urethane waterproof coating material. The test was carried out by adding the same amount of organic solvents into each experimental group which is subject to volatility and non-volatility of organic solvents, respectively. The results of the test showed that in both experimental groups modified asphalt sheet was dissolved when adding over 10 percent of organic solvents regardless of volatility, and oil leakage observed only in the experimental group subject to volatility.

  • PDF