• Title/Summary/Keyword: Shedding frequency

Search Result 269, Processing Time 0.022 seconds

A Study on Under-Frequency Load Shedding Scheme of Korea Electric Power System using TSAT (TSAT을 이용한 우리나라 계통의 저주파수 부하차단 방식 검토)

  • Lee, Kang-Wan;Bae, Joo-Cheon;Cho, Burm-Sup;Oh, Hwa-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.34-37
    • /
    • 2003
  • The frequency of power system will change when the load-generation equilibrium is disturbed. Insufficiency of generation from the imbalance between load and generation decreases the power system frequency. In case of the severe emergency, the under frequency load shedding scheme is applied for the power system defense plan. In this paper, we analyzed the dynamic characteristics of under frequency load shedding using new Transient Security Assessment Tool ; TSAT. We applied the actual UFLS scheme to these studies and considered the possible contingency.

  • PDF

Experimental Study on the Vortical Flow Behind 2-D Blade with the Variation of Trailing Edge Shape (2차원 날개 끝단 형상에 따른 후류 보오텍스 유동 변화에 대한 실험 연구)

  • Paik, Bu-Geun;Kim, Ki-Sup;Moon, Il-Sung;Ahn, Jong-Woo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.3
    • /
    • pp.233-237
    • /
    • 2011
  • In the present experiments, vortical structures behind the hydrofoil trailing edge are visualized and analyzed as an elementary study for propeller singing phenomena. Two sorts of hydrofoil are selected for the measurement of shedding vortices. One was KH45 hydrofoil section and the other is KH45 with the truncated trailing edge that is positioned at X/C = 0.9523(C=chord length). Assuming the Strouhal number of 0.23, the shedding frequencies of vortices are extracted by analyzing the boundary layer thickness and the flow speed. The frequency distribution of shedding vortices is obtained with the variation of angle-of-attack while the flow speed is fixed to 8m/s. The truncation of the trailing edge makes the frequency of shedding vortices about 120Hz lower than that of original trailing edge and makes the vorticity value higher than the original trailing edge.

Numerical Simulation on Laminar Flow Past a Rotary Oscillating Circular Cylinder (주기 회전하는 원형 실린더 주위 층류 유동장의 수치 시뮬레이션)

  • Park, Jong-Chun;Moon, Jin-Kuk;Chun, Ho-Hwan;Suh, Sung-Bu
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.4 s.142
    • /
    • pp.368-378
    • /
    • 2005
  • The effects of rotary oscillation on the unsteady laminar flow past a circular cylinder. are numerically investigated in the present study. The numerical solutions for the 20 Wavier-Stokes equation are obtained using a finite volume method Tn the framework of an overlapping grid system. The vortex formation behind a circular cylinder and the hydrodynamics of wake flows for different rotary oscillation conditions are analyzed from the results of numerical simulation. The lock-on region is defined as the region that the natural shedding frequency due to the Karmann Vortex shedding and the forcing frequency due to the forced oscillating a cylinder are nearly same, and the quasi-periodic states are observed around that region. At the intersection between lock-on and non-lock-on region the shedding frequency is bifurcated. After the bifurcation, one frequency fellows the forcing frequency($S_f$) and the other returns to the natural shedding frequency($St_0$). in the quasi-periodic states, the variation of magnitudes and relevant phase changes of $C_L$ with forcing phase are examined.

Study on the Application of Optionum Load Shedding (최적부하제한방식의 적용에 관한 연구)

  • 송길영;이경재
    • 전기의세계
    • /
    • v.24 no.2
    • /
    • pp.84-91
    • /
    • 1975
  • This paper describes the results of a study for the system characteristics, especislly for the abnormal frequency drop of power system, when a large generation unit such as Kori Nuclear 1 (595MW) pulls out from the system. The automatic load shedding method now adopted in our system was re-studied to ameliorate the above problem. From the results of the study, a new under-frequency relay with an element for detecting the slope of frequency change and with time delay element to raise the lowered frequency to a desired value, was found to be effective, and should be purchased and utilized. By this study, an optimal and concrete load shedding method was recommended for reliable operation of power system.

  • PDF

Effect of viscoelasticity on two-dimensional laminar vortex shedding in flow past a rotating cylinder

  • Kim, Ju-Min;Ahn, Kyung-Hyun;Lee, Seung-Jong
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.1
    • /
    • pp.27-37
    • /
    • 2009
  • In this work, we numerically investigate the effect of viscoelasticity on 2D laminar vortex dynamics in flows past a single rotating cylinder for rotational rates $0{\leq}{\alpha}{\leq}5$ (the rotational rate ex is defined by the ratio of the circumferential rotating velocity to free stream velocity) at Re=100, in which the vortex shedding has been predicted to occur in literature for Newtonian fluids. The objective of the present research is to develop a promising technique to fully suppress the vortex shedding past a bluff body by rotating a cylinder and controlling fluid elasticity. The predicted vortex dynamics with the present method is consistent with the previous works for Newtonian flows past a rotating cylinder. We also verified our method by comparing our data with the literature in the case of viscoelastic flow past a non-rotating cylinder. For $0{\leq}{\alpha}{\leq}1.8$, the frequency of vortex shedding slightly decreases but the fluctuation of drag and lift coefficient significantly decreases with increasing fluid elasticity. We observe that the vortex shedding of viscoelastic flow disappears at lower ${\alpha}$ than the Newtonian case. At ${\alpha}$=5, the relationship between the frequency of vortex shedding and Weissenberg number (Wi) is predicted to be non-monotonic and have a minimum around Wi=0.25. The vortex shedding finally disappears over critical Wi number. The present results suggest that the vortex shedding in the flow around a rotating cylinder can be more effectively suppressed for viscoelastic fluids than Newtonian fluids.

A Study on the Determination and Application of the Optimum Load Shedding Schemes (최적부하제한방식의 결정과 운용에 관한 연구)

  • Song, Kil-Yeong
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.34 no.1
    • /
    • pp.29-37
    • /
    • 1985
  • During Severe emergencies which result in the case of outage of large generator units, an automatic underfrequency protection scheme can prevent the system frequency from decaying and improve the system stability. This paper presents methods and results of a study on the optimum load shedding scheme which covering as follows. 1) Detail representation of governor model 2) Determination of optimum load shedding amount 3) Selection of action time settings of UFR 4) Comparsson of load shedding programs By this study, the optimum system operating method was recommended for reliable operation of power system.

  • PDF

Acoustic resonance by Inserting Anti-noise Baffle in the Tube Bank of Boiler of a Large Fossil Power Plant (대형석탄화력발전용 보일러 관군의 Anti-Noise Baffle 설치에 따른 음향공진)

  • Bang, Kyung-Bo;Kim, Cheol-Hong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.178-183
    • /
    • 2004
  • This paper presents phenomena of vibration and noise due to acoustic resonance in tube bank of a large fossil power plant. The phenomena of acoustic resonance may arise when the vortex shedding frequency coincides with the acoustic natural frequency. In this system dominant frequency of vibration and noise was 37.5Hz. The $3^{rd}$ acoustic natural frequency calculated was 37.2 Hz. When the difference of vortex shedding frequency and acoustic natural frequency is within ${\pm}20%$, acoustic resonance could occur. If system is the state of acoustic resonance, vibration and noise become large. In order to prevent acoustic resonance, anti-noise baffle should be installed in the tube bank. In the case of installing baffle, we should consider the number of baffle and the effect of acoustic mode due to baffle extension length. To do this, we did acoustic mode analysis. After installing anti-noise baffle, acoustic resonance was disappeared and vibration magnitude and noise level was reduced dramatically.

  • PDF

Characteristics of Flow Over a Rotationally Oscillating Cylinder (주기적으로 회전하는 원형실린더 주위의 유동특성)

  • Choe, Hae-Cheon;Choe, Seong-Ho;Gang, Sang-Mo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.4
    • /
    • pp.515-523
    • /
    • 2002
  • Effects of rotary oscillation on unsteady laminar flow past a circular cylinder have been investigated in this study. Numerical simulations are performed for the flow at Re=100 in the range of 0.2<$\Omega$<2.5 and 0.02<$St_f$<0.8, where $\Omega$ and $St_f$ are, respectively, the maximum rotation velocity and rotation frequency normalized by the free-stream velocity and cylinder diameter. Results show that rotary oscillation has significant effects on the flow. When the rotation frequency is near the natural vortex-shedding frequency, lock-on occurs and the lock-on frequency range becomes wider as the rotation velocity increases. In a certain range of the rotation frequency and velocity, modulations in the velocity, lift and drag signals occur and this modulation frequency is expressed as a linear combination of the rotation frequency and vortex-shedding frequency. The mean drag and amplitude of the lift fluctuations show local minima near the boundary between the lock-on non and lock-on regions.

Lock-on Characteristics of wake behind a Rotationally Oscillating Circular Cylinder (주기적으로 회전진동하는 원주 후류의 공진특성)

  • Lee Jung Yeop;Lee Sang Joon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.18-21
    • /
    • 2004
  • Lock-on characteristics of the flow around a circular cylinder performing a rotationally oscillation with a relatively high forcing frequency have been investigated experimentally using flow visualization and hot-wire measurements. Dominant parameters are Reynolds number (Re), amplitude of oscillation $(\theta_A)$, and frequency ratio $F_R=f_f\;/\;f_n$, where $f_f$ is the forcing frequency and if is the natural frequency of vortex shedding. Experiments were carried out under the conditions of $Re=4.14\times10^3,\;\pi/15\leq\theta_A\leq\pi/3$, and $F_R=1.0$. The effects of this active control technique on the lock-on flow regime of the cylinder wake were evaluated through wake velocity measurements and spectral analysis of hot-wire signals. The rotary oscillation modified the flow structure of near wake significantly. The lock-on phenomenon was found to occur in the range of frequency encompassing the natural vortex shedding frequency. In addition, when the amplitude of oscillation is less than a certain value, the lock-on phenomenon was occurred only at $F_R=1.0$. The lock-on range expanded and vortex formation length decreased as the amplitude of oscillation increases. The rotary oscillation generated small-scale vortex structure just near the cylinder surface.

  • PDF

Discrete-vortex Simulation of Turbulent Separation Bubble Excited by Acoustic Perturbatioons (음향교란을 받는 난류박리기포의 이산와류 수치해석)

  • 임재욱;성형진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.4
    • /
    • pp.775-786
    • /
    • 1992
  • Studies are made of the turbulent separation bubble in a two-dimensional semi-infinite blunt plate aligned to a uniform free stream when the oncoming free stream contains a pulsating component. The discrete-vortex method is applied to simulate this flow situations because this approach is effective to represent the unsteady motions of turbulent shear layer and the effect of viscosity near the solid surface. The two key external paramenters in the free stream, i.e., the amplitude of pulsation, A, and the frequency parameter St[=fH/ $U_{1}$], are dealt with in the present numerical computations, A particular frequency gives a minimum reattachment which is related to the drag reduction and the most effective frequency is dependent on the most amplified shedding frequency. The turbulent flow structure is scrutinized. A comparison between the unperturbed flow and the perturbed at the particular frequency of the minimum reattachment length of the separation bubble suggests that the large-scale structure is associated with the shedding frequency and the flow instabilities.