• 제목/요약/키워드: Shear-wave velocity

검색결과 487건 처리시간 0.027초

표면파 탐사에 의한 필댐 사력죤의 전단파속도 산정 연구 (Study on Shear Wave Velocity of Fill Dam rock zone using Surface Wave Method)

  • 권혁기;신은철
    • 한국지진공학회논문집
    • /
    • 제13권5호
    • /
    • pp.1-9
    • /
    • 2009
  • 본 연구에서는, 필댐 사력죤의 전단파속도 특성을 분석하고자 하였으며, 필댐 사력죤의 특성상 주로 표면에서 비파괴적으로 수행되는 표면파 탐사 기법을 적용하여 전단파속도를 도출 하였다. 대표적 표면파 기법인 SASW기법과 새롭게 개발된 HWAW 기법을 이용하여 6개댐 사력죤에서 시험을 통해 심도별 전단파속도와 구속압에 따른 전단파속도를 산정하고 그 결과를 기존에 많이 사용되었던 Sawada와 Takahashi의 결과와 비교 분석하였다.

실트의 비배수 전단강도 및 밀도와 전단파속도와의 상관관계 (Correlating Undrained Shear Strength and Density of Silt with Shear Wave Velocity)

  • 오상훈;박동선;정재우;박철수;목영진
    • 한국지반공학회논문집
    • /
    • 제24권5호
    • /
    • pp.79-87
    • /
    • 2008
  • 최근에 벤더 엘리먼트를 이용한 현장탄성파 프로브(probe, MudFork로 명명됨)가 개발되어 정밀하고 수월하게 연약지반의 전단파 속도를 측정할 수 있게 되었다. 이 탄성파시험의 용도를 확장하고자 강성도 측정과 함께 전단강도와 밀도를 추정할 수 있는 상관관계를 시도하였다. 인천의 한 연약지반 현장에서 콘시험과 MudFork를 사용하여 현장탄성파시험을 수행하고, 시료를 채취하여 실내에서 삼축압축시험과 병행하여 공시체의 전단파 속도를 측정하였다. 이 결과로부터 연약지반의 전단강도와 전 단파속도의 상관관계와, 밀도와 전 단파속도의 상관관계를 정립하였다.

Probabilistic Q-system for rock classification considering shear wave propagation in jointed rock mass

  • Kim, Ji-Won;Chong, Song-Hun;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • 제30권5호
    • /
    • pp.449-460
    • /
    • 2022
  • Safe underground construction in a rock mass requires adequate ground investigation and effective determination of rock conditions. The estimation of rock mass behavior is difficult, because rock masses are innately anisotropic and heterogeneous at different scales and are affected by various environmental factors. Quantitative rock mass classification systems, such as the Q-system and rock mass rating, are widely used for characterization and engineering design. The measurement of rock classification parameters is subjective and can vary among observers, resulting in questionable accuracy. Geophysical investigation methods, such as seismic surveys, have also been used for ground characterization. Torsional shear wave propagation characteristics in cylindrical rods are equal to that in an infinite media. A probabilistic quantitative relationship between the Q-value and shear wave velocity is thus investigated considering long-wavelength wave propagation in equivalent continuum jointed rock masses. Individual Q-system parameters are correlated with stress-dependent shear wave velocities in jointed rocks using experimental and numerical methods. The relationship between the Q-value and the shear wave velocity is normalized using a defined reference condition. This relationship is further improved using probabilistic analysis to remove unrealistic data and to suggest a range of Q-values for a given wave velocity. The proposed probabilistic Q-value estimation is then compared with field measurements and cross-hole seismic test data to verify its applicability.

가스함유퇴적물의 음향특성: 한국 진해만의 예비결과 (Acoustic Properties of Gassy Sediments: Preliminary Result of Jinhae Bay, Korea)

  • 김길영;김대철;여정윤;유동근
    • The Journal of the Acoustical Society of Korea
    • /
    • 제26권1E호
    • /
    • pp.33-38
    • /
    • 2007
  • Compressional wave velocity and shear wave velocity were measured for gassy sediments collected from Jinhae Bay, Korea. To distinguish inhomogeneities of gassy sediments, Computed Tomography (CT) was carried out for gassy sediment using CT Scanner. The cored sediments are composed of homogeneous and soft mud (greater than $8{\Phi}$ in mean grain size) containing clay content more than 50%. In depth interval of gassy sediments, compressional wave velocity is significantly decreased from 1480m/s to 1360m/s, indicating that the gas greatly affects compressional wave velocity due to a gas and/or degassing cracks. Shear wave velocity shows a slight increasing pattern from ${\sim}55\;m/s$ in the upper part of the core to ${\sim}58\;m/s$ at 320 cm depth, and then decreases to ${\sim}54\;m/s$ in the lower part of the core containing a small amount of gas. But shear wave velocity in the gassy sediments is slightly greater than that of non-gassy sediments in the upper part of the core. Thus, the Vp/Vs ratio is decreased (from 30 to 25) in gas charged zone. The Vp/Vs ratio is well correlated with shear wave velocity, but no correlation with compressional wave velocity. This suggests that low concentrations of gas have little affects on shear wave velocity. By CT images, the gas in the sediments is mostly concentrated around inner edge of core liner due to a long duration after sediment collection.

Shear wave velocity of fiber reinforced cemented Toyoura silty sand

  • Safdar, Muhammad;Newson, Tim;Schmidt, Colin;Sato, Kenichi;Fujikawa, Takuro;Shah, Faheem
    • Geomechanics and Engineering
    • /
    • 제25권3호
    • /
    • pp.207-219
    • /
    • 2021
  • Several additives are used to enhance the geotechnical properties (e.g., shear wave velocity, shear modulus) of soils to provide sustainable, economical and eco-friendly solutions in geotechnical and geo-environmental engineering. In this study, piezoelectric ring actuators are used to measure the shear wave velocity of unreinforced, fiber, cemented, and fiber reinforced cemented Toyoura sand. One dimensional oedometer tests are performed on medium dense specimens of Toyoura sand-cement-fiber-silica flour mixtures with different percentages of silica flour (0-42%), fiber and cement (e.g., 0-3%) additives. The experimental results indicate that behavior of the mixtures is significantly affected by the concentration of silica flour, fiber and cement additives. Results show that with the addition of 1-3% of PVA fibers, the shear wave velocity increases by only 1-3%. However, the addition of 1-4% of cement increases the shear wave velocity by 8-35%. 10.5-21% increase of silica flour reduces the shear wave velocity by 2-5% but adding 28-42% silica flour significantly reduces the shear wave velocity by 12-31%. In addition, the combined effect of cement and fibers was also found and with only 2% cement and 1% fiber, the shear wave velocity increase was found to be approximately 24% and with only 3% cement and 3% fibers this increased to 35%. The results from this study for the normalized shear modulus and normalized mean effective stress agree well with previous findings on pure Toyoura sand, Toyoura silty sand, fiber reinforced, fiber reinforced cemented Toyoura sand. Any variations are likely due to the difference in stress history (i.e., isotropic versus anisotropic consolidation) and the measurement method. In addition, these small discrepancies could be attributed to several other factors. The potential factors include the difference in specimen sizes, test devices, methods of analysis for the measurement of arrival time, the use of an appropriate Ko to convert the vertical stresses into mean effective stress, and sample preparation techniques. Lastly, it was investigated that there is a robust inverse relationship between α factor and 𝞫0 exponent. It was found that less compressible soils exhibit higher 𝜶 factors and lower 𝞫0 exponents.

초음파를 이용한 중회귀분석법에 의한 콘크리트의 압축강도추정 (Estimate of Compressive Strength for Concrete using Ultrasonics by Multiple Regression Analysis Method)

  • 박익근;한응교;김완규
    • 비파괴검사학회지
    • /
    • 제11권2호
    • /
    • pp.22-31
    • /
    • 1991
  • Various types of ultrasonic techniques have been used for the estimation of compressive strength of concrete structures. However, conventional ultrasonic velocity method using only longitudial wave cannot be determined the compressive strength of concrete structures with accuracy. In this paper, by using the introduction of multiple parameter, e. g. velocity of shear wave, velocity of longitudinal wave, attenuation coefficient of shear wave, attenuation coefficient of longitudinal wave, combination condition, age and preservation method, multiple regression analysis method was applied to the determination of compressive strength of concrete structures. The experimental results show that velocity of shear wave can be estimated compressive strength of concrete with more accuracy compared with the velocity of longitudinal wave, accuracy of estimated error range of compressive strength of concrete structures can be enhanced within the range of ${\pm}$10% approximately.

  • PDF

Wave Generation And Wind-Induced Shear Current In Water

  • Choi, Injune
    • 한국해양학회지
    • /
    • 제15권1호
    • /
    • pp.1-7
    • /
    • 1980
  • The results of measurements of shear current induced in water by wind in wind wave tunnel are presented briefly. The shear current distributions are found to fit reasonably well an exponentiall form. This form was used to estimate surface velocity and boundary layer thickness used in stability analysis. An analysis of hydrodynamic stability of the shear current was carried out, using a broken line as an approximate profile, to see the stability as a possible mechanism of wind wave generation. Comparison between experimental results and theoretical ones shows that there exists a large discrepancy particularly in phase velocity and hydrodynamic instability of the shear current seems not to be the basic mechanism of wind wave generation.

  • PDF

지반개량을 통한 원지반의 전단파속도 향상에 대한 실험적 연구 (An Experimental Study on the Shear Wave Velocity Improvement of Ground by Ground Improvement)

  • 정찬유;문재성;조명수;강호덕;양희정
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제23권7호
    • /
    • pp.33-39
    • /
    • 2019
  • 이 연구에서는 지반의 개량에 따른 전단파속도 및 지반등급 향상 여부를 알아보기 위하여 지반개량체의 형상을 변수로 실험적 연구를 수행하였다. 실험은 지반개량체의 형상을 변수로 크로스홀(Cross hole) 기법을 이용하여 전단파속도를 측정하였다. 또한, 이 연구에서 측정된 결과와 기존 전단파속도 측정결과를 이용하여 국내 지반조건에 맞는 N-Value에 대한 전단파속도 예측식을 제안하였다. 실험결과, 지반개량을 수행하는 경우 원지반의 전단파속도는 소폭 상승하였다. 또한, 이 연구에서 제안한 예측식은 지층조건에 관계없이 기존실험결과를 합리적으로 예측하였다.

전단파를 이용한 연약지반의 압밀도 평가기법 적용성 연구 (Feasibility study on the Evaluation of the degree of consolidation using shear waves for soft clay deposits)

  • 윤준웅;김종태;이진선;김동수
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.442-451
    • /
    • 2008
  • The evaluation of field degree of consolidation on soft clays has been an important problem in geotechnical areas. Monitoring either settlements or pore water pressures has been widely applied in the filed, but occasionally they have some problems. This study addresses the suggestion and application of another method for evaluating the degree of consolidation using shear wave velocities. A research site where soft clay layers were consolidated by surcharging loads was chosen. Laboratory tests were performed to determine the relation between shear wave velocity and effective stress. Field seismic tests were conducted several times during the consolidation of the clay layers. The tests results show that the shear wave velocity increased significantly as clays consolidated. The shear wave velocities at each field stress states were derived from the laboratory results and the degree of consolidation was evaluated by comparing the shear wave velocities obtained by laboratory and field seismic methods. In most stress states, the degree of consolidation evaluated using the shear wave velocity matched well with that obtained from field settlement record, showing the potential of applying the method using shear waves in the evaluation of field degree of consolidation on soft clay deposits.

  • PDF

대형 사력댐에서의 전단파속도 평가를 위한 단측선 빔형성기법 (Short-Array Beamforming Technique for the Investigation of Shear-Wave Velocity at Large Rockfill Dams)

  • 조성호;나디아
    • 대한토목학회논문집
    • /
    • 제33권1호
    • /
    • pp.207-218
    • /
    • 2013
  • 대형 사력댐의 내진성능 평가에서 필히 요구되는 입력상수는 사력재료, 코아매질의 전단파 속도이다. 이를 표면파 시험으로 평가하기 위해서는 사력골재의 불연속, 매질의 비균질, 사면 경계면 등 표면파 시험결과의 신뢰도를 떨어뜨리는 조건을 극복해야 한다. 본 연구에서는 이러한 표면파시험의 한계를 극복하기 위하여 기존 빔형성기법의 원리를 응용한 SBF (Short-Array Beamforming) 기법을 제안하였다. SBF 기법은 3~9 m의 짧은 측선과 원거리 발진원을 이용함으로써, 빔형성기법 고유의 장점인 측정자료의 자동화분석뿐만 아니라 근접장 문제의 해결, 국부적 이상대의 발견 등의 기능을 가지도록 개발되었다. 본 연구에서는 이러한 SBF 기법과 IRF(Impulse-Response Filtration) 기법을 활용하여 대형 사력댐의 전단파속도를 신뢰성 있게 평가하는 방법을 정립하였다. 정립된 기법은 사력댐의 사력재료와 유사한 암버럭으로 매립 성토된 철도 노반에서 다운홀 시험, CapSASW (Common-Array-Profiling SASW) 시험과의 비교를 통하여 그 신뢰성과 실용성을 검증하였다.