• Title/Summary/Keyword: Shear strength reduction technique

Search Result 44, Processing Time 0.019 seconds

The effect of composite-elastomer isolation system on the seismic response of liquid-storage tanks: Part I

  • Shahrjerdi, A.;Bayat, M.
    • Earthquakes and Structures
    • /
    • v.15 no.5
    • /
    • pp.513-528
    • /
    • 2018
  • A typical viable technique to decrease the seismic response of liquid storage tanks is to isolate them at the base. Base-isolation systems are an efficient and feasible solution to reduce the vulnerability of structures in high seismic risk zones. Nevertheless, when liquid storage tanks are under long-period shaking, the base-isolation systems could have different impacts. These kinds of earthquakes can damage the tanks readily. Hence, the seismic behaviour and vibration of cylindrical liquid storage tanks, subjected to earthquakes, is of paramount importance, and it is investigated in this paper. The Finite Element Method is used to evaluate seismic response in addition to the reduction of excessive liquid sloshing in the tank when subjected to the long-period ground motion. The non-linear stress-strain behaviour pertaining to polymers and rubbers is implemented while non-linear contact elements are employed to describe the 3-D surface-to-surface contact. Therefore, Nonlinear Procedures are used to investigate the fluid-structure interactions (FSI) between liquid and the tank wall while there is incompressible liquid. Part I, examines the effect of the flexibility of the isolation system and the tank aspect ratio (height to radius) on the tank wall radial displacements of the tank wall and the liquid sloshing heights. Maximum stress and base shear force for various aspect ratios and different base-isolators, which are subjected to three seismic conditions, will be discussed in Part II. It is shown that the composite-base isolator is much more effective than other isolators due to its high flexibility and strength combined. Moreover, the base isolators may decrease the maximum level pertaining to radial displacement.

Influence of Pore Pressure Behind a Subsea Tunnel on Its Stability (터널 배면의 간극수압이 해저터널의 안정성에 미치는 영향)

  • You, Kwang-Ho;Lee, Kwang-Hoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.4
    • /
    • pp.355-363
    • /
    • 2006
  • In this study, it was analyzed how the pore pressure behind a subsea tunnel influences on the stability of the tunnel. The tunnel is located in the soft rock layer, and a soft sandy layer and weathered soil layer are located on the top of it. Coupled numerical analyses are performed for both drained and undrained condition with varying coefficients of lateral earth pressure. In the case of undrained conditions, the stability of the tunnel was analyzed with different thicknesses of shotcrete. On the other hand, a sensitivity analysis was performed with different hydraulic conductivities and porosities of the shotcrete for the drained conditions. The stability of a subsea tunnel was evaluated in terms of safety factor suggested by You et al.(2000, 2001, 2005) based on the shear strength reduction technique. In this paper, the safety factor of a tunnel was calculated under steady state flow condition during hydro-mechanical coupled analysis. As a result, it was found that the stability of a subsea tunnel could be rather increased by allowing a proper amount of groundwater inflow into a subsea tunnel.

Reinforcing Effect of a Soil Nailing on Plane Failure of a Slope by Comparing Finite Difference Analysis with Limit Equilibrium Analysis (유한차분해석과 한계평형해석의 비교를 통한 평면파괴 사면 쏘일네일링 보강효과 연구)

  • You, Kwang-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.11
    • /
    • pp.5-15
    • /
    • 2014
  • It is very important to design and construct slopes safely because damage cases are increasing due to slope failure. Recently, Limit Equilibrium Method (LEM) based programs are commonly used for slope designs. Though LEM can give factors of safety through simple calculation, it has a disadvantage that the sliding surface should be assumed in advance. On the other hand, the use of Finite Difference Method (FDM) is increasing since the factor of safety can be easily estimated by using shear strength reduction technique. Therefore the purpose of this study is to present a reasonable slope design methodology by comparing the two commonly used analysis approaches; LEM and FDM. To this end, the reinforcement effects of the two methods were compared in terms of the support pattern of soil nailing reinforced in the section where plane failure is anticipated. As a result, the reinforcement effects by nail angle and nail spacing turned out to be equal. Also it was found that the factor of safety increased in LEM, but not changed in FDM when the nail length increased.

The effect of the shape factor of an underground cavern in good rock conditions on its stability by 2D discontinuum analysis (2차원 불연속체 해석에 의한 양호한 암반 내의 지하공동 형상비가 안정성에 미치는 영향 검토)

  • You, Kwang-Ho;Jung, Ji-Suug
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.2
    • /
    • pp.189-198
    • /
    • 2009
  • Recently the concern about the construction of underground structures such as oil and food storage caverns is increasing in Korea and abroad. The stability of those underground caverns is greatly influenced by shape factor and the size of excavation area as well as the joint conditions. In this study, therefore, the effect of the shape factor of an underground cavern on its stability was analyzed in terms of safety factor. To this end, four different shape factors of a cavern excavated in good rock conditions were investigated and sensitivity analyses were performed based on overburden, lateral earth pressure coefficient, joint spacing, properties, and orientation. The stability of a cavern is evaluated in terms of safety factor estimated numerically based on the shear strength reduction technique. In future, this study is expected to be helpful in designing and evaluating the stability of caverns excavated in discontinuous rock masses.