• Title/Summary/Keyword: Shear strength parameters

Search Result 797, Processing Time 0.027 seconds

Study on the Shear Strengthening of Concrete Beams with Wire Rope Clamped by Bolts (볼트 체결된 와이어 로프를 이용한 RC 보의 전단보강에 대한 연구)

  • Kim, Sun-Young;Song, Jin-Gyu;Lee, Young-Uk;Byun, Hang-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.2 s.92
    • /
    • pp.283-290
    • /
    • 2006
  • The paper describes m experimental study on the shear strengthening of concrete beams with exposed wire rope. The strengthening method is using the mechanical bolting of wire rope tensioned on the exterior of beam section. There are two shear strengthening types. The first is closed type wrapped beam section with wire rope like as closed stirrup. The second is U type tensioned at the anchor located in the side of beam section. The main parameters of specimens are strengthening spacings of wire rope with 150, 200, and 250mm for the closed and U type respectively. The shear span ratio of specimens applied by 3-point loading is 4. The results showed that the ultimate shear strength and ductility of strengthened beams increased significantly compared with non-strengthened beams. Especially, the strengthening effect of closed type was very preferable to U type. Therefore, the shear strengthening method with wire rope is very reasonable in view of repair and rehabilitation of beams.

Electrodeposition onto the Surface of Carbon Fiber and its Application to Composites(I) - Electrodeposition of MVEMA and EMA (탄소섬유 표면에의 고분자 전착과 복합재료 물성(I) - MVEMA와 EMA의 전착 -)

  • Kim, Minyoung;Kim, Jihong;Kim, Wonho;Kim, Booung;Hwang, Byungsun;Choi, Youngsun
    • Applied Chemistry for Engineering
    • /
    • v.9 no.6
    • /
    • pp.894-900
    • /
    • 1998
  • An interphase between carbon fiber and epoxy matrix was introduced to increase impact strength of carbon fiber reinforced composites (CFRC) without sacrificing the interlaminar shear strength. Flexible polymers, I. e., MVEMA (poly(methyl vinyl ether-co-maleic anhydride)) and EMA(poly(ethylene-co-maleic anhydride)), which have reactive functional groups were considered as interphase materials. Weight hain of MVEMA and EMA onto the surface of carbon fibers was evaluated by changing the parameters of electrodeposition process. Electrodeposition mechanism of polymers which have anhydride functional group was identified by IR spectroscopy, that is, the generation of $RCOO^-$ functional group by the attack of hydroxide anion in the basic solution was observed. The weight gain was increased by increasing concentration of polymers, current density, and electrodeposition time. However the excess generation of oxygen gas decreased the weight gain by removing the deposited polymers. Washing in the running water easily removed the deposited polymers which are on the fiber surface without bonding, as a results, only 0.5 wt% of deposited polymers are remained.

  • PDF

Nonlinear soil parameter effects on dynamic embedment of offshore pipeline on soft clay

  • Yu, Su Young;Choi, Han Suk;Lee, Seung Keon;Park, Kyu-Sik;Kim, Do Kyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.2
    • /
    • pp.227-243
    • /
    • 2015
  • In this paper, the effects of nonlinear soft clay on dynamic embedment of offshore pipeline were investigated. Seabed embedment by pipe-soil interactions has impacts on the structural boundary conditions for various subsea structures such as pipeline, riser, pile, and many other systems. A number of studies have been performed to estimate real soil behavior, but their estimation of seabed embedment has not been fully identified and there are still many uncertainties. In this regards, comparison of embedment between field survey and existing empirical models has been performed to identify uncertainties and investigate the effect of nonlinear soil parameter on dynamic embedment. From the comparison, it is found that the dynamic embedment with installation effects based on nonlinear soil model have an influence on seabed embedment. Therefore, the pipe embedment under dynamic condition by nonlinear parameters of soil models was investigated by Dynamic Embedment Factor (DEF) concept, which is defined as the ratio of the dynamic and static embedment of pipeline, in order to overcome the gap between field embedment and currently used empirical and numerical formula. Although DEF through various researches is suggested, its range is too wide and it does not consider dynamic laying effect. It is difficult to find critical parameters that are affecting to the embedment result. Therefore, the study on dynamic embedment factor by soft clay parameters of nonlinear soil model was conducted and the sensitivity analyses about parameters of nonlinear soil model were performed as well. The tendency on dynamic embedment factor was found by conducting numerical analyses using OrcaFlex software. It is found that DEF was influenced by shear strength gradient than other factors. The obtained results will be useful to understand the pipe embedment on soft clay seabed for applying offshore pipeline designs such as on-bottom stability and free span analyses.

Numerical Design Approach to Determining the Dimension of Large-Scale Underground Mine Structures (대규모 지하 광산 구조물의 규모 결정을 위한 수치해석적 설계 접근)

  • Lee, Yun-Su;Park, Do-Hyun;SunWoo, Choon;Kim, Gyo-Won;Kang, Jung-Seok
    • Tunnel and Underground Space
    • /
    • v.22 no.2
    • /
    • pp.120-129
    • /
    • 2012
  • Recently, mining facilities have being installed in an underground space according to a social demand for environment-friendly mine development. The underground structures for mining facilities usually requires a large volume of space with width greater than height, and thus the stability assessment of the large-scale underground mine structure is an important issue. In this study, we analysed a factor of safety based on strength reduction method, and proposed a numerical design approach to determining the dimension of underground mine structures in combination with a strength reduction method and a multivariate regression analysis. Input design parameters considered in the present study were the stress ratio and shear strength of rock mass, and the width and cover depth of underground mine structures. The stabilities of underground mine structures were assessed in terms of factor of safety under different conditions of the above input parameters. It was calculated by the strength reduction method, and several kinds of fit functions were obtained through various multivariate regression analyses. Using a best-fit regression model, we proposed the charts which provide preliminary design information on the dimension of underground mine structures.

Size Effect on Flexural Compressive Strength of Reinforced Concrete Beams (철근콘크리트 보의 휨압축강도에 대한 크기효과)

  • 김민수;김진근;이성태;김장호
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.934-941
    • /
    • 2002
  • It is important to consider the effect of member size when estimating the ultimate strength of a concrete flexural member because the strength always decreases with an increase of member size. In this study, the size effect of a reinforced concrete (RC) beam was experimentally investigated. For this purpose, a series of beam specimens subjected to four-point loading were tested. More specifically, three different effective depth (d$\approx$15, 30, and 60 cm) reinforced concrete beams were tested to investigate the size effect. The shear-span to depth ratio (a/d=3) and thickness (20 cm) of the specimens were kept constant where the size effect in out-of-plane direction is not considered. The test results are curve fitted using least square method (LSM) to obtain parameters for the modified size effect law (MSEL). The analysis results show that the flexural compressive strength and the ultimate strain decrease as the specimen size increases. In the future study, since $\beta_1$ value suggested by design code and ultimate strain change with specimen size variation, a more detailed analysis should be performed. Finally, parameters for MSEL are also suggested.

Effect of Fabric Sound of Vapor Permeable Water Repellent Fabrics for Sportswear on Psychoacoustic Properties (스포츠웨어용 투습발수직물 소리가 심리음향학적 특성에 미치는 영향)

  • Lee, Jee-Hyun;Lee, Kyu-Lin;Jin, Eun-Jung;Yang, Yoon-Jung;Cho, Gil-Soo
    • Science of Emotion and Sensibility
    • /
    • v.15 no.2
    • /
    • pp.201-208
    • /
    • 2012
  • The objectives of this study were to investigate the psychoacoustic properties of PTFE(Poly tetra Fluoroethylene) laminated vapor permeable water repellent fabrics which are frequently used for sportswear, to examine the relationship among fabrics' basic characteristics, mechanical properties and the psychoacoustic properties, and finally to propose the predicting model to minimize the psychoacoustic fabric sound. A total of 8 specimens' frictional sound were recorded and Zwicker's psychoacoustic parameters such as loudness(Z), sharpness(Z), roughness(Z), and fluctuation strength(Z) were calculated using the Sound Quality Program. Mechanical properties of specimens were measured by KES-FB system. Loudness(Z) of specimen D-1 was the highest, which means the rustling sound of the specimen D-1 was the most noisy. Statistically significant difference among film type was observed only in loudness(Z) for fabric sound. Based on ANOVA and post-hoc test, specimens were classified into less loud PTFE film group (groupI) and loud PTFE film group (groupII). Loudness(Z) was higher when staple yarn was used compared when filament yarn was used. According to the correlation between the mechanical properties of fabrics and loudness(Z) in groupI, the shear properties, compression properties and weight showed positive correlation with loudness(Z). According to the regression equation predicting loudness(Z) of groupI, the layer variable was chosen. In groupII, variables explaining the loudness(Z) were yarn types and shear hysteresis(2HG5).

  • PDF

THE EFFECTS OF CRYSTAL GROWTH ON SHEAR BOND STRENGTH OF ORTHODONTIC BRACKET ADHESIVES TO ENAMEL SURFACE (Crystal growth에 의한 법랑질 표면처리가 교정용 브라켓 접착제의 전단결합강도에 미치는 영향)

  • Lee, Young-Jun;Park, Young-Guk
    • The korean journal of orthodontics
    • /
    • v.27 no.5 s.64
    • /
    • pp.839-852
    • /
    • 1997
  • It has been submitted that different ion solutions containing sulfate induce crystal growth and might substitute conventional acid etching for pretreatment of enamel in orthodontic bonding(${\AA}rtun$ et al., Am. J. Orthod. 85, 333, 1984). This investigation was designed to evaluate the relevance of crystal growth on the enamel surface as an alternative to conventional acid etching in direct bonding of orthodontic brackets. Annexing Li2SO4, MgSO4, K2SO4 respectively in the solution with $25\%$ polyacrylic md 0.3M sulfuric acids were employed to enhance the crystal growth. Human bicuspids were treated with various parameters as combinations of crystal growth and glass ionomer cement, crystal growth and orthodontic resin, acid etching and orthodontic resin for an investigative purpose. Crystal growth solution containing MgSO4 showed the highest shear bond strength(15.6MPa) within the groups of bonding brackets with glass ionomer cement(p<0.01). Bonding with glass ionomer cement on the surface of crystal growth demonstrated higher shear bond strength than with orthodontic resin(p<0.001). Bonding with glass ionomer cement on the surface treated with crystal growth solution containing MgSO4 or K2SO4 was not different shear bond strength statistically from bonding with orthodontic resin on the acid-etched surface. It suggests that bonding brackets with glass ionomer cement on the surface treated with crystal growth solution containing MgSO4 or K2SO4 is a potential alternative to bonding with resin on the acid etched sufrace.

  • PDF

Influence of Column Aspect Ratio on the Hysteretic Behavior of Slab-Column Connection (슬래브-기둥 접합부의 이력거동에 대한 기둥 형상비의 영향)

  • Choi, Myung-Shin;Cho, In-Jung;Ahn, Jong-Mun;Shin, Sung-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.515-525
    • /
    • 2007
  • In this investigation, results of laboratory tests on four reinforced concrete flat plate interior connections with elongated rectangular column support which has been used widely in tall residential buildings are presented. The purpose of this study is to evaluate an effect of column aspect ratio (${\beta}_c={c_1}/{c_2}$=side length ratio of column section in the direction of lateral loading $(c_1)$ to the direction of perpendicular to $c_1$) on the hysteretic behavior under earthquake type loading. The aspect ratio of column section was taken as $0.5{\sim}3\;(c_1/c_2=1/2,\;1/1,\;2/1,\;3/1)$ and the column perimeter was held constant at 1200mm in order to achieve nominal vertical shear strength $(V_c)$ uniformly. Other design parameters such as flexural reinforcement ratio $(\rho)$ of the slab and concrete strength$(f_{ck})$ was kept constant as ${\rho}=1.0%$ and $f_{ck}=40MPa$, respectively. Gravity shear load $(V_g)$ was applied by 30 percent of nominal vertical shear strength $(0.3V_o)$ of the specimen. Experimental observations on punching failure pattern, peak lateral-load and story drift ratio at punching failure, stiffness degradation and energy dissipation in the hysteresis loop, and steel and concrete strain distributions near the column support were examined and discussed in accordance with different column aspect ratio. Eccentric shear stress model of ACI 318-05 was evaluated with experimental results. A fraction of transferring moment by shear and flexure in the design code was analyzed based on the test results.

Seismic Behaviour of Exterior Joints in Post-Tensioned Flat Plate Systems (포스트 텐션 플랫 플레이트 외부 접합부의 내진 거동)

  • Han, Sang-Whan;Kee, Seong-Hoon;Kang, Tomas H.K.;Cho, Jong;Lee, Li-Hyung
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.5 s.95
    • /
    • pp.595-602
    • /
    • 2006
  • An experimental study was conducted to investigate seismic behaviour of post-tensioned(PT) exterior slab-column connections used for the purpose to resist gravity loads only. For these, 2/3-scale, two PT post-tensioned exterior connections with two different tendon arrangement patterns and one conventional reinforced concrete(RC) exterior connection was tested under quasi-static, uni-directional reversed cyclic loading. During the lateral testing, gravity forces transferred to the column were kept constant to closely simulate a moment to shear ratio of a real building. One of the objectives of this study was to assess the necessity and/or the quantity of bottom bonded reinforcement needed to resist moment reversal which would occur under significant inelastic deformations of the adjacent lateral force resisting systems. The ACI 318 and 352 provisions for structural integrity were applied to provide the bottom reinforcement passing through the column for the specimens. Prior test results were also collected to conduct comparative studies for some design parameters such as the tendon arrangement pattern, the effect of post-tensioning forces and the use of bottom bonded reinforcement. Consequently, the impact of tendon arrangement on the seismic performance of the PT connection, that is lateral drift capacity and ductility, dissipated energy and failure mechanism, was considerable. Moreover, test results showed that the amount of bottom reinforcement specified by ACI 352. 1R-89 was sufficient for resisting positive moments arising from moment reversal under reversed cyclic loads. Shear strength of the tested specimens was more accurately predicted by the shear strength equation(ACI 318) considering the average compressive stress over the concrete($f_{pc}$) due to post-tensioning forces than that without considering $f_{pc}$.

A Case Study of The Collapsed Reinforced-Soil Retaining Wall (보강토옹벽의 사고사례에 관한 연구)

  • Yoo, Chung-Sik;Jung, Hyuk-Sang;Lee, Soung-Woo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.3 no.2
    • /
    • pp.13-21
    • /
    • 2004
  • This paper deal with the analysis of the causes about case of collapsed reinforced-soil retaining wall. The analysis of the cause was carried through experimentation, slop stability analysis and literature study. The experimentation treated the large direct shear test, the hydraulic conductivity test and the other basic test through backfill extraction from collapsed reinforced-soil retaining wall. The ultimate tensile strength was established by rib tensile strength test of geogrid. The analysis of internal and external stability of reinforced-soil retaining wall was performed on the basis of parameters. The result of analysis, reinforced-soil retaining wall and the slope at the dry season are stable. However, the factors that fine-grained soil at hydrometer test exceed the standard of the design, rainfall duration is too long at the time of collapse and monthly pricipitation is heavy, which are causes of the collapse.

  • PDF