• Title/Summary/Keyword: Shear strength correction

Search Result 28, Processing Time 0.024 seconds

Concrete Shear Strength of High Strength Concrete Beams Reinforced with FRP Bars (FRP Bar를 사용한 고강도 콘크리트 보의 콘크리트 전단강도)

  • Yun, Hyeong-Su;Jang, Hee-Suk;Kim, Hee-Sung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.287-290
    • /
    • 2005
  • This study evaluates the concrete shear strength for normal and high strength concrete beams reinforced with 3 type FRP bars (CFRP, GFRP, HFRP). Experimental results obtained from twenty-four simply supported concrete beams are compared with values predicted by FRP shear strength expressions proposed in the various literatures, including the ACI Committee 318 and ACI Committee440. The shear strength correction factors are proposed through the regression analysis.

  • PDF

Characteristics and Prediction of Shear Strength for Unsaturated Residual Soil (풍화잔적토의 불포화전단강도 예측 및 특성연구)

  • 이인모;성상규;양일순
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.377-384
    • /
    • 2000
  • The characteristics and prediction model of the shear strength for unsaturated residual soils was studied. In order to investigate the influence of the initial water content on the shear strength, unsaturated triaxial tests were carried out varying the initial water content, and the applicability of existing prediction models for the unsaturated shear strength was testified. It was shown that the soil - water characteristic curve and the shear strength of the unsaturated soil varied with the change of the initial water content. A sample compacted in the lower initial water content needs a higher suction to get the same degree of saturation while the shear strength of a sample with the lower initial water content displays a lower value. In order to apply the existing prediction models of the unsaturated shear strength to granite residual soils, a correction coefficient, α, on the internal friction angle, ø'was added.

  • PDF

Shear strength of concrete beam using FRP Bars for flexure and shear reinforcements (FRP Bar를 휨 및 전단보강근으로 사용한 콘크리트 보의 전단강도)

  • Park Hyun Young;Jang Hee Suk;Kim Myung Sik;Kim Hee Sung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.399-402
    • /
    • 2005
  • This paper presents shear strength of concrete beam using FRP bars for flexure and shear reinforcements. Generally, the material properties of FRP bar are different from steel reinforcement. So, the shear strength correction factor is proposed through the experimental results.

  • PDF

Concrete Shear Strength of FRP Reinforced Concrete Beam (FRP 보강근을 사용한 콘크리트 보의 콘크리트 전단강도)

  • Cho, Jae Min;Jang, Hee Suk;Kim, Myung Sik;Kim, Chung Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3A
    • /
    • pp.259-266
    • /
    • 2009
  • This study is to develop equations that consider the elastic modulus ratio of FRP bar and steel reinforcement, shear span to depth ratio, and flexural reinforcement ratio of FRP bar, to determine concrete shear strength of FRP reinforced concrete beams without shear reinforcement. As experimental parameters, 2 types of FRP bar, 3 types of shear span to depth ratio, and 3 types of flexural reinforcement were used. Experimental results for two of shear span to depth ratio were quoted from previous study to evaluate effect of shear span to depth ratio in more detail. Shear strength correction factors needed for evaluating concrete shear strength were proposed from regression analysis using above experimental results. Equations suggested from this study and other codes were examined and compared with 31 experimental results available in the literature. From this comparison, it could be known that the equation suggested from this study gives the most approaching result to experimental results.

Concrete Shear Strength of FRP Bar Reinforced Concrete BeamAccording to Variation of Flexural Reinforcement Ratio (FRP Bar 콘크리트 보의 휨보강근비 변화에 따른 콘크리트 전단강도)

  • No, Kyeung-Bae;Jin, Chi-Sub;Jang, Hui-Suk;Kim, Hee-Sung;Hwang, Geum-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.2
    • /
    • pp.76-82
    • /
    • 2006
  • The concrete shear strength of FRP Bar reinforced concrete beam according to the variation of flexural reinforcement ratio was investigated. A number of experimental result showed that the concrete shear strength was lower than that of RC beam, but it was increased according to the increasement of reinforcement ratio. Shear strength correction factors considering the kind and reinforcement ratio of FRP Bar was proposed using the proposed formula in the literature and regression analysis of the experimental result.

Strength Parameter (c,ø) and Dilatancy Correction of Undisturbed Weathered Granite Soil (불교란 화강토의 강도정수 (c,ø) 및 Dilatancy 보정)

  • 정진섭;양재혁
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.6
    • /
    • pp.106-114
    • /
    • 2000
  • In order to evaluate the shear characteristics of undisturbed weathered granite soil which is a typical residual soil in Korea, the mechanical properties are first investigated and discussed by carrying out a series of direct shear test and then dilatancy correction is performed by using Taylor’s correction equation. In this study, specimens are sampled at Pungam(-3, -8, -13m below ground surface), Kwangju and Iksan(-5m below ground surface), Jeonbuk. The test results are summarized as follows: 1) Mohr-Coulomb failure criterion is not linear under the low confining pressure. 2) The value of cohesion is smaller than usually determined value in low pressure region. 3) The value of strength parameter c and ø which are corrected by Taylor’s correction equation is a little bit small.

  • PDF

Shear Strength of Fine Sand -Curvature Characteristics of Failure Envelope and Stress Parameter- (가는 모래의 전단강도 -파괴포락선의 곡률특성과 상태정수에 관하여-)

  • Yoon, Yeo Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.1
    • /
    • pp.195-202
    • /
    • 1994
  • In this research, a lot of triaxial test results (CID) are analyzed to study the curvature characteristics of failure envelope of sand and parametric relationship between shear strength and state parameter by Been and Jefferies. In the conventional triaxial tests, correction for the change of sectional area of a sample and for membrane influence is essential especially in order to determine critical state (or steady state) condition more correctly. Based on the test results, a model to express the shear strength of fine sand as a function of density and stress level is presented and curvature characteristics of shear failure envelope and parametric relationship between state parameter and shear strength parameters are evaluated.

  • PDF

Probabilistic shear strength models for reinforced concrete beams without shear reinforcement

  • Song, Jun-Ho;Kang, Won-Hee;Kim, Kang-Su;Jung, Sung-Moon
    • Structural Engineering and Mechanics
    • /
    • v.34 no.1
    • /
    • pp.15-38
    • /
    • 2010
  • In order to predict the shear strengths of reinforced concrete beams, many deterministic models have been developed based on rules of mechanics and on experimental test results. While the constant and variable angle truss models are known to provide reliable bases and to give reasonable predictions for the shear strengths of members with shear reinforcement, in the case of members without shear reinforcement, even advanced models with complicated procedures may show lack of accuracy or lead to fairly different predictions from other similar models. For this reason, many research efforts have been made for more accurate predictions, which resulted in important recent publications. This paper develops probabilistic shear strength models for reinforced concrete beams without shear reinforcement based on deterministic shear strength models, understanding of shear transfer mechanisms and influential parameters, and experimental test results reported in the literature. Using a Bayesian parameter estimation method, the biases of base deterministic models are identified as algebraic functions of input parameters and the errors of the developed models remaining after the bias-correction are quantified in a stochastic manner. The proposed probabilistic models predict the shear strengths with improved accuracy and help incorporate the model uncertainties into vulnerability estimations and risk-quantified designs.

A NEW CPT-BASED METHOD FOR UNDRAINED SHEAR STRENGTH ESTIMATION OF CLAYS

  • Lee, Jun-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09c
    • /
    • pp.18-23
    • /
    • 2010
  • The estimation of the undrained shear strength $s_u$ for clays using CPT results has been mainly based on the cone factor $N_k$. In this study, a new CPT-based method for the estimation of the undrained shear strength $s_u$ is presented. This aims at reducing uncertainties for the estimation of $s_u$ and enhancing the application of CPT results in more effective manner. For this purpose, a site located at a marine clay deposit is selected and test results from extensive experimental testing program are adopted. The new method defines a direct correlation between the undrained shear strength $s_u$ and the cone resistance $q_t$, excluding the procedure of the overburden pressure correction and therefore undisturbed soil sampling process. In order to verify the new CPT-based method, additional test sites and example sites from literature, which consist of a variety of soil conditions, are selected and examined. It is observed that values of su obtained from the proposed method are in good agreements with measured values of $s_u$ for all the selected verification cases.

  • PDF