• 제목/요약/키워드: Shear strain data

검색결과 179건 처리시간 0.026초

변형률속도효과를 고려한 일반냉연강판 점용접부의 피로수명평가 (Fatigue Life Evaluation of Spot Weldments of SPC Sheet Including Strain Rate Effect)

  • 송준혁;나석찬;유효선;강희용;양성모
    • 한국자동차공학회논문집
    • /
    • 제14권1호
    • /
    • pp.48-53
    • /
    • 2006
  • A methodology is described for predicting the fatigue life of the resistance spot weldment including strain rate effect. Because it is difficult to perform a physical failure test with high strain rate, an analytical method is necessary to get the mechanical properties of various strain rate, To this end, quasi-static tensile-shear tests at several strain rate were performed on spot weldments of SPC. These test provided the empirical data with the strain rate. With these results, we formulated the function of fatigue life prediction using the lethargy coefficient which is the global material property from tensile test. And, we predicted the fatigue life of spot weldment at dynamic strain rate. To confirm this method for fatigue life prediction, analytical results were compared with the experimental fatigue data.

Experimental investigation of local stress distribution along the cross-section of composite steel beams near joints

  • Sangwook Park;Patricia Clayton;Todd A. Helwig;Michael D. Engelhardt;Eric B. Williamson
    • Steel and Composite Structures
    • /
    • 제51권5호
    • /
    • pp.563-573
    • /
    • 2024
  • This research experimentally evaluated the local stress distribution along the cross-section of composite beams under both positive and negative moments. The experiment utilized a large-scale, two-story, two-by-three bay steel gravity frame with a concrete on metal deck floor system. The composite shear connections, which are nominally assumed to be pinned under gravity loading, can develop non-negligible moment-resisting capacity when subjected to lateral loads. This paper discusses the local stress distribution, orshear lag effects, observed near the beam-to-column connections when subjected to combined gravity and lateral loading. Strain gauges were used for measurements along the beam depth at varying distances from the connection. The experimental data showed amplified shear lag effects near the unconnected region of the beam web and bottom flange under the applied loading conditions. These results indicate that strain does not vary linearly across the beam cross-section adjacent to the connection components. This insight has implications for the use of experimental strain gauge data in estimating beam demands near the connections. These findings can be beneficial in informing instrumentation plans for future experimental studies on composite beams.

Computational viscoelastic modeling of strain rate effect on recycled aggregate concrete

  • Suthee Piyaphipat;Boonchai Phungpaingam;Kamtornkiat Musiket;Yunping Xi
    • Computers and Concrete
    • /
    • 제32권4호
    • /
    • pp.383-392
    • /
    • 2023
  • The mechanical properties of Recycled Aggregate Concrete (RAC) with 100 percent Recycled Coarse Aggregate (RCA) under loading rates were investigated in depth. The theoretical model was validated utilizing the RAC elastic modulus obtained from cylindrical specimens subjected to various strain rates. Viscoelastic theories have traditionally been used to describe creep and relaxation of viscoelastic materials at low strain rates. In this study, viscoelastic theories were extended to the time domain of high strain rates. The theory proposed was known as reversed viscoelastic theory. Normalized Dirichlet-Prony theory was used as an illustration, and its parameters were determined. Comparing the predicted results to the experimental data revealed a high level of concordance. This methodology demonstrated its ability to characterize the strain rate effect for viscoelastic materials, as well as its applicability for determining not only the elastic modulus for viscoelastic materials, but also their shear and bulk moduli.

SNCM 강종의 파인블랭킹 전단부의 변형거동에 관한 연구 (A study on the Shear Zone Deformation Behavior Of Fine-Blanking Process Of SNCM 220)

  • 이종구
    • Design & Manufacturing
    • /
    • 제6권1호
    • /
    • pp.73-78
    • /
    • 2012
  • The aim of this dissertation is inferring factors controlling the complex strain behavior of the material and the characteristics of the Fine-Blanking in the most narrow area at the shear zone where we are performing the Fine-Blanking. And also this is for inspecting and presenting their uses and the possibilities to make the results data based in order to utilize easily. Therefore, to analyze of shere zone's strain behaviour, the Fine-Blanking process need to be modelled defining the quadratic-nodded and axi-symmetrical elements as the problems of large deformation axi-symmetry and the non-linear contact. For the method of inputting strain-stress values of the material, the piece-wise linear technics were used, the Implicit-Finite Element method also used making balance of forces on each step by the long intervals, calculates and converges many times was done. The materials used for the analysis was the Steel SNCM220 5.5mm respectively. As the result of FEM analysis, we know that shear stress value in the beginning of punch penetration is distributed widely and done high both in the center of the late-thickness and on the both sides centering around shear strain zone as the punch penetration is increasing. Also.

  • PDF

소성 변형을 고려한 전단 지배 부재의 스트럿-타이 모델 (The Strut-and-Tie Models for Shear Dominant R/C Members considering Plastic Deformations)

  • 홍성걸;장상기
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2005년도 학술발표회 논문집
    • /
    • pp.145-152
    • /
    • 2005
  • This paper presents a deformable strut-and-tie model of determining the shear strengths and ultimate deformations of the shear-dominant reinforced concrete members. The proposed model originates from the strut-and-tie model concept and satisfies equilibrium, compatibility, constitutive laws, and the geometric conditions of shear deformation. This study attempts to apply deformation patterns to strut-and-tie models. The yielding of flexural reinforcements determines yielding states and the ultimate states of reinforced concrete coupling beam are defined as the ultimate compressive strain of struts and the degradation of compressive strength due to principal tensile strain of struts. The validity and accuracy of the proposed model is then tested against available experimental data. The parameters reviewed include the ratios of truss action and arch action, the reinforcement ratios, and the shear span-depth ratio. It is expected that this model can be applied to displacement-based design methods.

  • PDF

불포화 이암풍화토의 동적거동 (Dynamic Behavior of Unsaturated Decomposed Mudstone Soil)

  • 배중선;이주상;김주철;이종규
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.541-548
    • /
    • 2001
  • The interest in the dynamic properties of soils has increased strongly because of earthquake, heavy traffic, and foundations undergo high amplitude of vibrations. Most of soils in Korean peninsula are composed of granite soils, especially the decomposed mudstone soils are widely spread in Pohang areas, Kyong-buk province. Therefore, it Is very important to investigate the dynamic properties of these types of soils. The most important soil parameters under dynamic loadings are shear modulus and material dampings. Furthermore, few definitive data exist that can evaluate the behavior of unsaturated decomposed mudstone soils under dynamic loading conditions. The investigations described in this paper is designed to identify the shear modulus and damping ratio due to a surface tension for the unsaturated decomposed mudstone soils ulder low and high strain amplitude, For this purpose, the resonant column test and the cyclic triaxial test were performed. Test results and data have shown that the optimum degree of saturation under low and strain amplitude is 32 ∼ 37% which is higher than that of decomposed granite due to the amount of fine particles as well as the type and proportion of chief rock-forming minerals.

  • PDF

고무부품의 유한요소해석을 위한 재료시험 및 비선형 재료물성에 관한 연구 (Mechanical Testing and Nonlinear Material Properties for Finite Element Analysis of Rubber Components)

  • 김완두;김완수;김동진;우창수;이학주
    • 대한기계학회논문집A
    • /
    • 제28권6호
    • /
    • pp.848-859
    • /
    • 2004
  • Mechanical testing methods to determine the material constants for large deformation nonlinear finite element analysis were demonstrated for natural rubber. Uniaxial tension, uniaxial compression, equi-biaxial tension and pure shear tests of rubber specimens are performed to achieve the stress-strain curves. The stress-strain curves are obtained after between 5 and 10 cycles to consider the Mullins effect. Mooney and Ogden strain-energy density functions, which are typical form of the hyperelastic material, are determined and compared with each other. The material constants using only uniaxial tension data are about 20% higher than those obtained by any other test data set. The experimental equations of shear elastic modulus on the hardness and maximum strain are presented using multiple regression method. Large deformation finite element analysis of automotive transmission mount using different material constants is performed and the load-displacement curves are compared with experiments. The selection of material constant in large deformation finite element analysis depend on the strain level of component in service.

스트럿-타이 모델을 이용한 철근 콘크리트 연결보의 하중-변위관계 (The Load-Displacement Relationships of R/C Coupling Beams using Strut-and-tie Models)

  • 장상기;홍성걸
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(I)
    • /
    • pp.139-142
    • /
    • 2005
  • This paper presents a deformable strut-and-tie model of determining the shear strengths and ultimate deformations of the shear-dominant reinforced concrete members. The proposed model originates from the strut-and-tie model concept and satisfies equilibrium, compatibility, constitutive laws, and the geometric conditions of shear deformation. This study attempts to apply deformation patterns to strut-and-tie models. The yielding of flexural reinforcements determines yielding states and the ultimate states of reinforced concrete coupling beam are defined as the ultimate compressive strain of struts and the degradation of compressive strength due to principal tensile strain of struts. The validity and accuracy of the proposed model is then tested against available experimental data. The parameters reviewed include the ratios of truss action and arch action, the reinforcement ratios, and the shear span-depth ratio. It is expected that this model can be applied to displacement-based design methods.

  • PDF

진동전단유동장에서 점탄성 반고형 연고기제(바셀린)의 레올로지 거동 (Rheological Behavior of Viscoelastic Semi-Solid Ointment Base (Vaseline) in Oscillatory Shear Flow Fields)

  • 송기원;장갑식
    • Journal of Pharmaceutical Investigation
    • /
    • 제36권1호
    • /
    • pp.31-38
    • /
    • 2006
  • Using a Rheometries Dynamic Analyzer (RDA II), the dynamic viscoelastic properties of a semi-solid ointment base (vaseline) in large amplitude oscillatory shear flow fields were measured over a temperature range of $25{\sim}45^{\circ}C$ and the linear viscoelastic behavior in small amplitude oscillatory shear flow fields was investigated over a wide range of angular frequencies. In this article, the nonlinear viscoelastic behavior was reported from the experimentally obtained data and the effect of temperature on this behavior was discussed in detail. In addition, the angular frequency and temperature dependencies of a linear viscoelastic behavior were explained. Finally, the applicability of a time-temperature superposition principle originally developed for polymeric materials was examined using a shift factor. Main results obtained from this study can be summarized as follows : (1) At very small strain amplitude region, vaseline shows a linear viscoelastic behavior independent of the imposed deformation magnitudes. Above a critical strain amplitude $({\gamma}_{0}=0.1{\sim}0.2%)$, however, vaseline exhibits a nonlinear viscoelastic behavior ; indicating that both the storage modulus and dynamic viscosity are sharply decreased with increasing deformation magnitude. (2) In large amplitude oscillatory shear flow fields, an elastic behavior (storage modulus) has a stronger strain amplitude dependence and begins to show a nonlinear behavior at a smaller strain amplitude region than does a viscous behavior (dynamic viscosity). (3) In small amplitude oscillatory shear flow fields, the storage modulus as well as the loss modulus are continuously increased as an increase in angular frequency and an elastic nature is always superior to a viscous behavior over a wide range of angular frequencies. (4) A time-temperature superposition principle can successfully be applicable to vaseline. This finding allows us to estimate the dynamic viscoelastic behavior of vaseline over an extraordinarily extended range (11 decades) of angular frequencies inaccessible from the experimentally measured range (4 decades).

다양한 시험 방법을 이용한 서해안 송도 지역에 분포하는 실트질 모래의 최대 전단탄성계수 평가 (Evaluation of Maximum Shear Modulus of Silty Sand in Songdo Area in the West Coast of Korea Using Various Testing Methods)

  • 정명훈;이강원;김명모;권형민;정충기
    • 한국지반공학회논문집
    • /
    • 제21권9호
    • /
    • pp.65-75
    • /
    • 2005
  • 흙의 최대 전단탄성계수는 동적/정적 지반구조물 설계에서 중요하게 다루어야 하는 기본 토질상수이다. 본 연구에서는 서해안 송도 지역의 실트질 모래에 대해 표준관입시험, 콘관입시험, 자가굴착식 공내재하시험, 다운홀 시험, 탄성파 탐사 콘관입시험, 공진주 시험 등을 수행하여 최대 전단탄성계수를 구하고 그 결과를 통계적으로 분석하였다. 다운홀 시험을 기준으로 표준관입시험 및 콘관입시험에 대한 경험식으로 구한 최대 전단탄성계수를 비교하고 새로운 경험식물 제안하였다. 제안식으로 구한 전단탄성계수는 다운홀 시험 결과와 비교적 잘 일치하였으며, 제안식을 이용하여 적절히 지반의 최대 전단탄성계수를 평가할 수 있음을 확인하였다.