• Title/Summary/Keyword: Shear stiffness

Search Result 1,619, Processing Time 0.021 seconds

Evaluation of the Bending Performance of a Modified Steel Grid Composite Deck Joint (격자형 강합성 바닥판의 수정된 이음부에 대한 휨성능 평가)

  • Shin, Hyun-Seop;Park, Ki-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.4
    • /
    • pp.38-47
    • /
    • 2013
  • For the joint connection of the precast steel grid composite decks, the prefabricated joint which is composed of concrete shear key and high-tension bolts was already proposed. In this study, for the purpose of increasing the bending stiffness and bending strength of the proposed prefabricated joint section details of the proposed joint are modified, and through experimental tests the bending performance, such as stiffness and strength of a modified joint, is compared with those of the proposed joint. Test and analysis results show that the shear cracks in the concrete shear key are clearly reduced by the strengthening of the shear key using shear studs and additional rebars. According to analysis results of the moment-curvature relationship, bending stiffness of the modified joint is about 47% greater than the stiffness of the proposed joint. Furthermore, the modified joint has about 32% greater bending strength than the proposed joint. Compared to specimens without the joint the modified joint has same or slightly higher bending strength, but about 37% lower bending stiffness.

Prediction for Shear Behavior of the Rock Joints with Boundary Conditions using the Graphic Method (Graphic 방법을 이용한 암반의 경계조건에 따른 절리면 전단거동 예측)

  • Kim Yong Jun;Lee Jeong Hark;Song Pum;Yeom Hyeong Jin
    • Proceedings of the KSR Conference
    • /
    • 2003.10b
    • /
    • pp.466-471
    • /
    • 2003
  • The characteristics of a rock joint which influence the stability of rock mass structures, such as the cut slopes and the tunnels, are largely controlled by the conditions of the rock joint as well as its boundary conditions. Boundary conditions can be represented by assuming that the deformability(or stiffness) of the rock mass surrounding the joints is modelled by a spring with stiffness. A new direct shear apparatus is developed in this study, which adapts a servo control system using PID algorithm. This apparatus can be used to investigate the various aspects of shear characteristics of the rock joints at conditions of constant normal stress and constant normal stiffness and so on. It is possible that the behavior under the constant normal stiffness condition can be predicted by the normalized graphic method with results obtained from the tests in the constant normal stress condition.

  • PDF

Assessment of Structural Stiffness and Fatigue Life in Self-Piercing Rivet(SPR) Joint of Car Body (차체 셀프-피어싱 리벳 접합의 구조강성 및 피로수명 평가)

  • Kim Min-gun;Lee Kun-chan;Lee Byung-jun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.8 s.227
    • /
    • pp.1174-1182
    • /
    • 2004
  • Recently, Self Piercing Rivet(SPR) has been spotlighted in the automotive industry as a substitutive resort of spot welding and has also been watched by the designer as lightening a car body due to their superior assembly processes. Fatigue behavior of SPR joint needs to be investigated experimentally and numerically to predict its structural stiffness and fatigue life. Testing of lap-shear specimens with various material combinations is performed to obtain the joining strength and the fatigue life of SPR connections. The simulation of SPR lap-shear specimens is also conducted to obtain the structural stiffness of SPR connections under different material combinations. A Finite element model of the SPR lap-shear specimen is developed using a FEMFAT SPR pre-processor. The fatigue lift of SPR specimen is predicted using a FEMFAT 4.4e based on the liner finite element analysis.

Study on The Damage Location Detection of Shear Building Structures Using The Degradation Ratio of Story Stiffness (층강성 손상비를 이용한 전단형 건물의 손상위치 추정에 관한 연구)

  • Yoo, Seok-Hyung
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.2
    • /
    • pp.3-10
    • /
    • 2018
  • Damage location and extent of structure could be detected by the inverse analysis on dynamic response properties such as frequencies and mode shapes. In practice the measured difference of natural frequencies represent the stiffness change reliably, however the measured mode shape is insensitive for stiffness change, but provides spatial information of damage. The damage detection index on shear building structures is formulated in this study. The damage detection index could be estimated from mode shape and srory stiffness of undamaged structure and frequency difference between undamaged and damaged structure. For the verification of the observed damage detection method, the numerical analysis of Matlab and MIDAS and shacking table test were performed. In results, the damage index of damaged story was estimated so higher than undamaged stories that indicates the damaged story apparently.

A Study on the Analytical Model of Shear Wall Considering the Current Status of Structural Design (구조설계실무 현황을 고려한 전단벽 해석모형에 관한 고찰)

  • Jung, Sung-Jin
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.9
    • /
    • pp.3-10
    • /
    • 2018
  • While computer environments have been dramatically developed in recent years, as the building structures become larger, the structural analysis models are also becoming more complex. So there is still a need to model one shear wall with one finite element. From the viewpoint of the concept of FEA, if one shear wall is modeled by one finite element, the result of analysis is not likely accurate. Shear wall may be modelled with various finite elements. Among them, considering the displacement compatibility condition with the beam element connected to the shear wall, plane stress element with in-plane rotational stiffness is preferred. Therefore, in order to analyze one shear wall with one finite element accurately, it is necessary to evaluate finite elements developed for the shear wall analysis and to develop various plane stress elements with rotational stiffness continuously. According to the above mentioned need, in this study, the theory about a plane stress element using hierarchical interpolation equation is reviewed and stiffness matrix is derived. And then, a computer program using this theory is developed. Developed computer program is used for numerical experiments to evaluate the analysis results using commercial programs such as SAP2000, ETABS, PERFORM-3D and MIDAS. Finally, the deflection equation of a cantilever beam with narrow rectangular section and bent by an end load P is derived according to the elasticity theory, and it is used to for comparison with theoretical solution.

Dynamic Sensitivity Analysis For Lateral Drift Control Of Frame-Shear Wall Structures (골조-전단벽 구조물의 횡변위제어를 위한 동적 민감도 해석)

  • Lee, Han-Joo;Kim, Ji-Youn;Han, Seung-Baek;Nam, Kyung-Yun;Kim, Ho-Soo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.571-576
    • /
    • 2007
  • This study presents stiffness-based optimal design to control quantitatively lateral drift of frame-shear wall structures subject to seismic loads. To this end, lateral drift constraints are established by introducing approximation concept that preserves the generality of the mathematical programming and can efficiently solve large scale problems. Also, the relationships of sectional properties are established to reduce the number of design variables and resizing technique of member is developed under the 'constant-shape' assumption. Specifically, the methodology of dynamic displacement sensitivity analysis is developed to formulate the approximated lateral displacement constraints. The 12 story frame-shear wall structural models is considered to illustrate the features of dynamic stiffness-based optimal design technique proposed in this study.

  • PDF

Behaviour of composite walls under monotonic and cyclic shear loading

  • Hossain, K.M. Anwar;Wright, H.D.
    • Structural Engineering and Mechanics
    • /
    • v.17 no.1
    • /
    • pp.69-85
    • /
    • 2004
  • The novel form of composite walling system consists of two skins of profiled steel sheeting with an in-fill of concrete. Such walling system can be used as shear elements in steel framed building subjected to lateral load. This paper presents the results of small-scale model tests on composite wall and its components manufactured from very thin sheeting and micro-concrete tested under monotonic and cyclic shear loading conditions. The heavily instrumented small-scale tests provided information on the load-deformation response, strength, stiffness, strain condition, sheet-concrete interaction and failure modes. Analytical models for shear strength and stiffness are derived with some modification factor to take into account the effect of quasi-static cycling loading. The performance of design equations is validated through experimental results.

Experimental and analytical study of steel slit shear wall

  • Khatamirad, Milad;Shariatmadar, Hashem
    • Steel and Composite Structures
    • /
    • v.24 no.6
    • /
    • pp.741-751
    • /
    • 2017
  • A steel slit shear wall has vertical slits and when it is under lateral loads, the section between these slits has double-curvature deformation, and by forming a flexural plastic hinge at the end of the slit, it dissipates the energy on the structure. In this article, Experimental, numerical and analytical analyses are performed to study the effect of slit shape and edge stiffener on the behavior of steel slit shear wall. Seismic behavior of three models with different slit shapes and two models with different edge stiffener shapes are studied and compared. Hysteresis curves, energy dissipation, out of plane buckling, initial stiffness and strength are discussed and studied. The proposed slit shape reduces the initial stiffness, increases the strength and energy dissipation. Also, edge stiffener shape increases the initial stiffness significantly.

Stiffness loss in enzyme-induced carbonate precipitated sand with stress scenarios

  • Song, Jun Young;Sim, Youngjong;Yeom, Sun;Jang, Jaewon;Yun, Tae Sup
    • Geomechanics and Engineering
    • /
    • v.20 no.2
    • /
    • pp.165-174
    • /
    • 2020
  • The enzyme-induced carbonate precipitation (EICP) method has been investigated to improve the hydro-mechanical properties of natural soil deposits. This study was conducted to explore the stiffness evolution during various stress scenarios. First, the optimal concentration of urea, CaCl2, and urease for the maximum efficiency of calcite precipitation was identified. The results show that the optimal recipe is 0.5 g/L and 0.9 g/L of urease for 0.5 M CaCl2 and 1 M CaCl2 solutions with a urea-CaCl2 molar ratio of 1.5. The shear stiffness of EICP-treated sands remains constant up to debonding stresses, and further loading induces the reduction of S-wave velocity. It was also found that the debonding stress at which stiffness loss occurs depends on the void ratio, not on cementation solution. Repeated loading-unloading deteriorates the bonding quality, thereby reducing the debonding stress. Scanning electron microscopy and X-ray images reveal that higher concentrations of CaCl2 solution facilitate heterogeneous nucleation to form larger CaCO3 nodules and 11-12 % of CaCO3 forms at the interparticle contact as the main contributor to the evolution of shear stiffness.

Flexural stiffness of steel-concrete composite beam under positive moment

  • Ding, Fa-Xing;Liu, Jing;Liu, Xue-Mei;Guo, Feng-Qi;Jiang, Li-Zhong
    • Steel and Composite Structures
    • /
    • v.20 no.6
    • /
    • pp.1369-1389
    • /
    • 2016
  • This paper investigates the flexural stiffness of simply supported steel-concrete composite I-beams under positive bending moment through combined experimental, numerical, and different standard methods. 14 composite beams are tested for experimental study and parameters including shear connection degree, transverse and longitudinal reinforcement ratios, loading way are also investigated. ABAQUS is employed to establish finite element (FE) models to simulate the flexural behavior of composite beams. The influences of a few key parameters, such as the shear connection degree, stud arrangement, stud diameter, beam length, loading way, on the flexural stiffness is also studied by parametric study. In addition, three widely used standard methods including GB, AISC, and British standards are used to estimate the flexural stiffness of the composite beams. The results are compared with the experimental and numerical results. The findings have provided comprehensive understanding of the flexural stiffness and the modelling of the composite beams. The results also indicate that GB 50017-2003 could provide better results in comparison to the other standards.