• Title/Summary/Keyword: Shear spinning

Search Result 43, Processing Time 0.026 seconds

Developing Trends of Spinning Process for Manufacturing Thrust Chamber of Launch Vehicle (발사체 연소기 제작에서 스피닝 공정 개발 동향)

  • Lee, Keumoh;Ryu, Chulsung;Choi, Hwanseok;Heo, Seongchan;Kwak, Junyoung;Choi, Younho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.6
    • /
    • pp.64-71
    • /
    • 2015
  • Spinning process is generally used for manufacturing axisymmetrical, thin-walled thickness and hollow circular cross-section parts. Traditional spinning technology is classified to conventional spinning and power spinning(shear spinning and flow forming). Literature surveys of spinning application for regenerative cooling chamber and divergent nozzle of liquid propellent rocket thrust chamber have been conducted. Most spinning technology has been used mandel for manufacturing chamber and nozzle. Recently, hot spinning has been used much compared to traditional cold spinning.

One-dimensional modeling of flat sheet casting or rectangular Fiber spinning process and the effect of normal stresses

  • Kwon, Youngdon
    • Korea-Australia Rheology Journal
    • /
    • v.11 no.3
    • /
    • pp.225-232
    • /
    • 1999
  • This study presents 1-dimensional simple model for sheet casting or rectangular fiber spinning process. In order to achieve this goal, we introduce the concept of force flux balance at the die exit, which assigns for the extensional flow outside the die the initial condition containing the information of shear flow history inside the die. With the Leonov constitutive equation that predicts non-vanishing second normal stress difference in shear flow, we are able to describe the anisotropic swelling behavior of the extrudate at least qualitatively. In other words, the negative value of the second normal stress difference causes thickness swelling much higher than width of extrudate. This result implies the importance of choosing the rheological model in the analysis of polymer processing operations, since the constitutive equation with the vanishing second normal stress difference is shown to exhibit the characteristic of isotropic swelling, that is, the thickness swell ratio always equal to the ratio in width direction.

  • PDF

A Computational Study of Aerodynamic Characteristics of Spinning Sphere (회전하는 구의 공력특성에 수치해석적 연구)

  • Deshpande, S.V.;Lee, Y.K.;Kim, H.D.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.223-226
    • /
    • 2006
  • Computational Study of a sphere subjected to free stream flow and simultaneously subjected to spinning motion is carried out. Three dimensional compressible Navier-Stokes equations are solved using fully implicit finite volume scheme. SST(Shear Stress Transport) $k-{\omega}$ turbulence model is used. Aerodynamic characteristics being affected are studied. Validation of the numerical process is done for the no spin condition. Variation of drag coefficient and shock wave strength with increase in spinning rate is reported. Changes in the wake region of the sphere with respect to spinning speed are also observed.

  • PDF

Effect of a Concentrated Mass on the Dynamic Stability of Spinning Free-Free Beam Subjected to a Thrust (회전하는 양단자유보의 동적 안정성에 대한 추력과 집중질량의 영향에 관한 연구)

  • Yoon, Seung-Joon;Kim, Ji-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.695-700
    • /
    • 2000
  • The dynamic stability of spinning beam with free boundary conditions for both edges subjected to a tip follower force $P_0+P_1cos{\Omega}t$ is analyzed. It is studied that the beam has a concentrated mass. and then the effects of the axial locations of the mass are studied. The beam is modelled with the Timoshenko type shear deformations. The Hamilton's principle is used to derive the equations of motion, and the critical spinning speed of a beam subjected to a follower force with various non-dimensional parameters is investigated. The finite elements are used with $C^0$ continuity to analyze the spinning beam model, and the method of multiple scales is tried to investigate the dynamic instability regions. The governing equations of motion involve periodic coefficients, which are not in the form of standard Mathieu-Hill equations. The result shows that the concentrated mass increases the dynamic stability of the spinning free-free beam subjected to a thrust.

  • PDF

Resonance behavior of functionally graded carbon nanotube-reinforced composites shells with spinning motion and axial motion

  • Jia-Qin Xu;Gui-Lin She
    • Steel and Composite Structures
    • /
    • v.49 no.3
    • /
    • pp.325-335
    • /
    • 2023
  • The missile is affected by both spinning and axial motion during its movement, which will have a very adverse impact on the stability and reliability of the missile. This paper regards missiles as cylindrical shell structures with spinning and axial motion. In this article, the forced vibration of carbon nanotube-reinforced composites (CNTRCs) cylindrical shells with spinning motion and axial motion is investigated, in which the clamped-clamped and simply-simply supported boundary conditions are considered. The displacement field is described by the first-order shear theory, and the vibration equation is deduced by using the Euler-Lagrange equation, after dimensionless processing, the dimensionless equation of motion is obtained. The correctness of this paper is verified by comparing with the results of the existing literature, in which the simply-simply supported ends are taken into account. In the end, the effects of different parameters such as spinning velocity, axial velocity, carbon nanotube volume fraction, length thickness ratio and load position on the resonance behavior of cylindrical shells are given. It can be found that these parameters can significantly change the resonance of axially moving and rotating moving CNTRCs cylindrical shells.

The Spinnability of Multi-step Cylindrical Cup in Spinning Process (스피닝 공정을 이용한 다단 원형 컵 형상의 성형성에 관한 연구)

  • 박중언;한창수;최석우;김승수;나경환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.1016-1020
    • /
    • 2001
  • The spinning is a very effective manufacturing technology for short production runs in a variety of sizes and shapes, because it can form the cross-section or tubular parts various shapes. However extensive experimental and analytical research has not been carried out. In this study, and fundamental experiment was conducted to improve productivity with process parameter such as tool path, angle of roller holder(a), feed rate(v) and corner radius of forming roller(Rr). These factors were selected as variables in the experiment because they were most likely expected to have and effect on spring back. The clearance was controlled in order to achieve the precision product which is comparable to deep drawing one. And also thickness and diameter distribution of a multistage cup obtained by shear spinning process were observed and compared with those of a commercial product produced by conventional deep drawing.

  • PDF

Effect of addition of methanol on rheological properties of silk formic acid solution

  • Bae, Yu Jeong;Um, In Chul
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.40 no.1
    • /
    • pp.28-32
    • /
    • 2020
  • Recently, many studies have been undertaken on the wet spinning and electrospinning of silk because wet-spun fibers and electrospun webs of silk can be applied in the biomedical and cosmetic fields owing to the good biocompatibility of silk. The rheological properties of silk solution are important because they strongly affect the spinning performance of the silk solution and the structures of resultant fibrous materials. Therefore, as a preliminary study on the effect of solvent composition on the rheological properties of silk fibroin (SF) solution and structure of the resultant film, in the reported work, methanol was added to the SF formic acid solution. A small amount of methanol (i.e. 2%) added to the SF formic acid solution significantly altered the rheological properties of the solution: its shear viscosity increased by 10 folds at low shear and decreased on increasing the shear rate, demonstrating shear thinning behavior of the SF solution. Dynamic tests for the SF solution indicated that the addition of 2% methanol altered the viscous state of the SF formic acid solution to elastic. However, the molecular conformation (i.e. β-sheet conformation) of the regenerated SF film cast from formic acid remained unchanged on the addition of 2% methanol.

Spin-coated ultrathin multilayers and their micropatterning using microfluidic channels

  • Hongseok Jang;Kim, Sangcheol;Jinhan Cho;Kookheon Char
    • Korea-Australia Rheology Journal
    • /
    • v.15 no.1
    • /
    • pp.1-7
    • /
    • 2003
  • A new method is introduced to build up organic/organic multilayer films composed of cationic poly(allylamine hydrochloride) (PAH) and negatively charged poly (sodium 4-styrenesulfonate) (PSS) using the spinning process. The adsorption process is governed by both the viscous force induced by fast solvent elimination and the electrostatic interaction between oppositely charged species. On the other hand, the centrifugal and air shear forces applied by the spinning process significantly enhances desorption of weakly bound polyelectrolyte chains and also induce the planarization of the adsorbed polyelectrolyte layer. The film thickness per bilayer adsorbed by the conventional dipping process and the spinning process was found to be about 4 ${\AA}$ and 24 ${\AA}$, respectively. The surface of the multilayer films prepared with the spinning process is quite homogeneous and smooth. Also, a new approach to create multilayer ultrathin films with well-defined micropatterns in a short process time is Introduced. To achieve such micropatterns with high line resolution in organic multilayer films, microfluidic channels were combined with the convective self-assembly process employing both hydrogen bonding and electrostatic intermolecular interactions. The channels were initially filled with polymer solution by capillary pressure and the residual solution was then removed by the .spinning process.

The effect of the spinning conditions on the structure of mesophase pitch-based carbon fibers by Taguchi method

  • Jiang, Zhao;Ouyang, Ting;Yao, Xiangdong;Fei, Youqing
    • Carbon letters
    • /
    • v.19
    • /
    • pp.89-98
    • /
    • 2016
  • Taguchi’s experimental design was employed in the melt spinning of molten mesophase pitch to produce carbon fibers. The textures of the obtained carbon fibers were radial with varied crack angles, as observed by scanning electron microscopy and polarized optical imaging. The diameter, crack angle, preferred orientation, and tensile modulus of the produced samples were examined to investigate the influence of four spinning variables. The relative importance of the variables has been emphasized for each characteristic. The results show that thicker carbon fiber can be obtained with a smaller entry angle, a higher spinning temperature, a reduced winding speed, and an increased extrusion pressure. The winding speed was found to be the most significant factor in relation to the fiber diameter. While it was observed that thicker carbon fiber generally shows improved preferred orientation, the most important variable affecting the preferred orientation was found to be the entry angle. As the entry angle decreased from 120° to 60°, the shear flow was enhanced to induce more ordered radial alignment of crystallite planes so as to obtain carbon fibers with a higher degree of preferred orientation. As a consequence, the crack angle was increased, and the tensile modulus was improved.