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Abstract

This study presents 1-dimensional simple model for sheet casting or rectangular fiber spinning process. In order
to achieve this goal, we introduce the concept of force flux balance at the die exit, which assigns for the
extensional flow outside the die the initial condition containing the information of shear flow history inside the
die. With the Leonov constitutive equation that predicts non-vanishing second normal stress difference in shear
flow, we are able to describe the anisotropic swelling behavior of the extrudate at least qualitatively. In other
words, the negative value of the second normal stress difference causes thickness swelling much higher than width
of extrudate. This result implies the importance of choosing the rheological model in the analysis of polymer
processing operations, since the constitutive equation with the vanishing second normal stress difference is
shown to exhibit the characteristic of isotropic swelling, that is, the thickness swell ratio always equal to the ratio

in width direction.
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1. Introduction

In modern plastics industry, the complexity of flow ge-
ometry combined with high Deborah number deformation
rate yields highly nonlinear viscoelastic phenomena of poly-
meric liquid, which until now prohibited thorough interpre-
tation and detailed mathematical modeling in view of fluid
mechanics. This limitation in the study of non-Newtonian
behavior may result from instability of numerical solutions
in high Deborah number flows, computational impractica-
bility under full 3D modeling, and so on. However, in such
polymer processing operations as fiber spinning, flat sheet
casting and film blowing processes, the flow geometry be-
comes the simplest due to some symmetry existent in prod-
uct shape and deformation type.

Even though there have been many attempts to numeri-
cally solve those problems employing 2D or 3D formulation
under the regime of Newtonian or viscoelastic flow (Crochet
and Keunings, 1982; Caswell and Viriyayuthakorn, 1983;
Bush et al., 1984; Otsuki, et al., 1997), their 1D modeling
can also be found (Tanner, 1970; Pearson and Petrie, 1970).
In this work, we model the flat sheet casting or rectangular
fiber spinning process employing some simplifying assump-
tions for 1D formulation.
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Major problems associated with sheet or film casting (or
rectangular fiber spinning) process are non-uniform distri-
bution of film thickness along its width, instability of the
process caused by draw resonance or melt fracture and for-
mation of edge beads (Baird and Collias,1995). For their
theoretical explanation, the process should be modeled in
terms of full 3D formulation with evolutionary behavior
inevitably taken into account in some cases. However, this
type of analysis frequently meets with such difficulties as
requirement of tremendous computation time and numerical
instability especially in modeling high Deborah number
flows. However, when one employs 1D formulation of
steady state, there is usually no limit in the Deborah num-
ber, but he has to sacrifice interpretation of 2D, 3D or tran-
sient flow phenomena to this stable 1D solution.

In sheet casting and rectangular fiber spinning processes
where the products possess high aspect ratio (width to
thickness ratio), there exists another nonlinear viscoelastic
phenomenon that the aspect ratio of the die does not
always coincide with that of the product. In reality, the
width of the sheet or the rectangular fiber does not change
much in comparison with the size of the die width, while
its thickness increases several times larger than that of the
die due to extrudate swelling (it has been reported that the
aspect ratio of the rectangular fiber often reduces to one
fifth of that of the die (Kikutani et al., 1998). Here we
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establish 1D formulation that possibly estimates this aniso-
tropic swelling behavior of the extrudate quantitatively. For
this purpose we employ the concept of force flux balance at
the die exit, which contains the information of shear flow his-
tory accumulated inside the die. This idea of using balance
equations has been already applied to the analysis of swelling
of extrudate in the case of circular die (Choi er al., 1998).

In our opinion, the anisotropy in swelling is caused by
the non-vanishing second normal stress difference (N<0)
in shear flow inside the die, i.e., its negative value incurs
reduction of the sheet width in comparison with its thick-
ness. In addition, by this simple analysis, we may be able
to examine the role of the nonzero second normal stress
difference quantitatively in polymer processing operations.
For proper estimation of this effect, we choose the con-
stitutive model that describes nonzero N, and then compare
the result with the vanishing N, case. Since many vis-
coelastic constitutive equations predict the vanishing sec-
ond normal stress difference in shear flow, on the basis of
our result we hopefully evaluate the applicability of rheo-
logical models to process modeling.

2. Modeling of sheet extrusion or rectangular
fiber spinning process

In order to appropriately describe viscoelastic behavior
of polymeric fluid, the simplest version of the Leonov
model (Leonov, 1976) is chosen, which has exhibited good
coincidence with experimental data (Simhambhatla and
Leonov, 1995) as well as sound character in view of mathe-
matical stability (Kwon and Leonov, 1995). Then the total
set of equations for incompressible media becomes

dv _ _
P =V.o+pg, V-v=0,

G=-pd+T=-pb+ i G,e?,
i=1

Vi, L[, 052 -19 g _
e+ [(c ) +2——c¢ —8}—0,

26, 3
10 =tre®, =tr(e™'d, detc?=1,
PG o
oy %—(VV)T~C(')—c(')-(VV), €]

where p is the density, v the velocity vector, g the gravity,
o and 7 are total and deviatoric stress tensors respectively,
p is the isotropic pressure, & a unit tensor, ¢” an elastic
strain tensor in the i-th Maxwellian mode, N the total num-
ber of nonlinear Maxwell elements, ¥<i> an upper con-
vected time derivative of ¢, G; and 6; are elastic modulus
and relaxation time of the i-th mode and tr is the trace
operator. Note that this constitutive equation does not
include any nonlinear parameter. In addition, it allows
instantaneous elastic response or propagation of elastic
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shear wave, since it contains no retardation term.

The geometry of the flow considered herein is depicted
in Fig.1, and it is supposedly divided into three defor-
mation types: shear flow inside the die (region I), tran-
sitional flow near the die exit (region II), and extensional
flow outside the die (region III). In this simple formu-
lation, we assume that inside and outside the die the flow
is isothermal, inertialess, incompressible and steady. The
die is long enough for the flow to be fully developed
(L>>H,), i.e. entrance effect can be neglected. We also
consider only the case where the width of the die is much
greater than its height (Wy>>H,) and thus the secondary
flow near the edge of the die is assumed to be negligible.
In the extensional flow outside the die, for the simple 1D
approach we suppose that the extrudate profile varies
slowly along the flow direction. Effects of gravity, surface
tension and air drag outside the die are also ignored. How-
ever, effects of gravity, air drag and non-isothermality
can be easily included in the formulation, and such inclu-
sion has already been demonstrated for modeling fiber
spinning process (Choi et al., 1998).

In region II, the velocity distribution along the height
starts to change just before the die exit. Then rapid rear-
rangement occurs immediately outside the die, and the
velocity becomes almost uniform across the extrudate
cross-section. The length of this transitional flow region is
thought to be in the order of height (2H,) of the die, and
here by assumption the shear flow instantly transforms to
the extensional flow. In order to take into account such
transition, we employ and modify the procedure proposed
by Choi ef al. (1998).

2.1 Shear flow inside a wide slit die

When the Poiseuille flow through a wide slit die is
steady and fully developed, the equation of motion deter-
mines non-vanishing components of the stress tensor as
follows in a typical coordinate system shown in Fig.1:

Fig. 1. Schematic representation of the sheet casting process and
the coordinate system.
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= __Pot+6 ( __Fo )
T= Tyztyy 01, Tyz__ L Yy, 0-0_4W0H0 > (2)

where z, y and x are flow, thickness and width directions
respectively, Py is the pressure applied at the entrance to the
slit, L. the length of the die, and F, the applied stretching
force.

The kinetic tensor relation in eqs.(1) yields simple
algebraic solutions for ¢”tensor, whose explicit form for
steady state can be written as

o [ 2{1+(267)’} T
i fieeen?]
1
o= [*_2_}
1+,/1+(20/7)°
26,y

yvi = T —
1+ J1+209)

Here y=dv,/dy (y<0) is the shear rate.
For simplicity, now we introduce dimensionless variables
and parameters defined as

ci=1. 3

Y —on 28 G
E=g - =01 w=g. vi=g.
{;zvzel <A>_ Qel =_‘£y_z
H, "’ 4W H32° TGy
~ ~ ~ T ~ T T
= =2z — Yy XX
Tw Tyz&:]; Tez G]’ Tyy Gl’ Txx G1 (4)

where Q is the volumetric flow rate. Then, we can readily
obtain the extrastress components in dimensionless form

D

i

; 2{1+4x2T%) |
2 G) 2 ll:—_____

ZTZ7 - i )
1+,/1+4xT

r—

~ () 2 ]
Tyy ZT)’}’ Vi I:—' ]
T L1+ 1+ 401
~ ~ (i) ZViKir
Ty = ZTyz = 2— s
i T1+./1+4x20
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As one can see in egs.(5), neither the first (N; = 1,,-7,,>0)
nor the second normal stress difference (N,=1,,-T,,>0)
vanishes for this Leonov model.

In this approach to determine the flow history accumu-
lated inside the die, we define following average quantities:
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(W= [VAE)E, (V¥ =], PV, (E)dE. (6)
Here < v, ¥ ) is the dimensionless average flux of some
dimensionless physical quantity ‘Y.

Egs.(2), (4) and (5) substitute functions of dimensionless
shear rate T for § and its differential

g=20) gag="lomar. @

where @(I') is in the form of

o(I) = 23 vik(L+42T) (1 +. /14420 @®)

Then eqs.(6) become

= [r —AJO yzdr}

(V¥ = LB, (Do), ©
where T, is the dimensionless shear rate at the die wall
(€ =£1). The velocity distribution expressed in terms of T’
is

. .~ 1 v, (1+ /T+4cT2
V() =v,(T) = TE—ln(——). 10)
27,1 K \1+,/1+4KT2

Hence, we can calculate some average quantity of flow his-
tory inside the die, whenever the shear rate is given.

2.2 Extensional flow of the extrudate

The coordinate axes and the variables specified in this
formulation are illustrated in Fig.1. We again define follo-
wing new variables and parameters necessary for descrip-
tion of the state outside the die:

_W _H ~Z S\ Qe1
v=% M L VSiwam
ORI 1C) SR
VZ_HOVZ_ wh ’ G2 =Tz Tyy"‘hw’
~ F,
00=2G,W,H,’ an

Here w and h express width and thickness variations along
the flow direction respectively, v, is the axial velocity,
and 6,, actual dimensionless normal stress on the ext-
rudate cross-section acting in flow direction.

Due to assumed uniformity of variables over the cross-
section of extrudate and negligible variation of extrudate
profile along the flow direction (IdW/dz |<<1 and |dH/dz
I<<1), ¢” can be approximated to be diagonal and all the
quantities may be represented as functions only of axial
distance z. Then the relations (1) reduce to
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where 0 (@ &Q

cieied) = 1.

The above three differential equations combined with
two stress relations in (12) constitute a closed set for this
problem. Hence, as soon as initial values c{) (z = 0), c)
(z=0), ¢ (z=0), and w(z =0), h(z =0) are assigned,
we can determine subsequent profile of the extrudate and
stress variation along the flow direction. Now we establish
the scheme for obtaining the initial condition, using some
concept of force flux balance.

2.3 Formulation of initial conditions
In this section, we take the transitional flow into con-
sideration. The initial condition that has to be supplied for
solving eqs.(12) still remains unknown. For convenience,
we denote the initial values of variables at die exit as
Wl,_0 = Wo, h|,_o=hg, c|,_o = (€@, C{|.<0 = (cEo

=0 = (co- (13)

w, and hy, which are not unit in general, designate sudden
changes in width and thickness of extrudate at die exit due
to instantaneous elastic response. This instantaneous defor-
mation of extrudate can be justified by the following argu-
ment. Since the constitutive equation does not include any
retardation term, it allows immediate elastic response.
Therefore when the material is released from its constraint
(the die wall) at the exit, on the basis of this hypothesis it
instantaneously expands (or may shrink) to achieve w = w,
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and h =h,. In the real situation, this kind of instant elas-
ticity is suppressed due to the existence of surface tension
and inertia. When the material shows much slower elastic
response, we think its behavior has to be described by the
constitutive equation with a retardation term. Then the
above type of quick elastic response will be restrained.
With little modification, the procedure developed hereafter
can also be used for the viscoelastic model with a New-
tonian viscous term. From now on, modifying the method
employed in the paper by Choi et al. (1998), we develop
mathematical procedure, which provides the initial values
to express the information of shear flow history.

In the Leonov model, the extra-stress tensor implies the
elastic strain assigned during the flow. Hence, we here as-
sume that via instantaneous elastic swelling near die exit
the rheological stress in shear flow is transformed to the
stress in extensional flow and the isotropic pressure relaxes
independently. Following transformation of the force flux
that has been formulated in the work by Choi er al. (1998),
is now introduced:

v =(WF-TF (14)

~ N 3, — " N~ (i) +

Here T = Zi(j()) and T = Zigf( )" are the stress tensors
in the shear flow inside the die and in the extensional flow out-
side it, respectively. In order to describe equilibrium swell ratio
of cylindrical extrudate, similar transformation was introduced
by Tanner (1970) not for force flux but for force balance. F and
F" are appropriate transformation matrix and its transpose.

In the most general axisymmetric (non-twisting) deforma-
tion, when we denote {z’, y’, X’} and {z, y, x} as the coor-
dinate systems before and after instantaneous swelling res-
pectively, the relation between the coordinates and F become

7'= wohoz +b(y) wohy b'(y) 0
y'=y/hg , F=| 0 1my 0 |
X'= X/Wy 0 0 l/w,
A VZT;Z 0 R _VVOhO b'y 0 ]
VT, Vol 0 =(v)| 0 I/hy O | X
0 0 vy L0 0 1w
% 0 0| fwshy, O 0]
01y O (Y 1/hy O .
00w L0 0 1w (15)

Here b(y) takes account of shearing deformation during
transition, and b’ = db/dy. In the case of extrudate swell for
a capillary die (Choi et al., 1998), the above type of trans-
formation was not possible since 1t,,#1;,. However, it is
not only valid for this geometrical system but also naturally
gives rise to anisotropy of swelling in width and thickness
directions (that is, wy#h, in general, and subsequently
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w=h ). Just for the comparison with the constitutive
equation that predicts N,=0 in shear flow, we intention-

ally modify the tensor ¢” under the condition of incom-
. Then, we have

pressibility det ¢’=1 to give 5, =1;,
el 0
detlcpc” o|=1, (t
0 0cY

(i)

=vc®). (16)

Here 7”is the modified dimensionless stress component
for normal stresses (t{))” and (t{))” in the i-th Max-
wellian mode, and its explicit form becomes

o 2(—10)—_{ (4. eI,y T avi@, ),

1= 3. (17)
1=1

Hence, we imply that tis substituted for both t;y' and
T ineq.15), when we mention the formulation with the
constitutive model that predicts N,=0 in shear flow.
With the aid of eqs.(15), we are now able to compute
Tex s Tyy's Tur» Wo  and hy, all of which contain the infor-
mation of the flow history inside the die. However, we
require that they be independent of y. Hence, we make an
average of the quantities by integrating them over the

cross-section of the extrudate (see eqs.(9)) as follows:

<Vszx> = <V7Txx>

<1xx> @ 3 (t W = @
<%zz>*=zg—><%[%u—%}>/@ (18)
with b‘(y)=§z1—:#. (19)

yy
There also exist outside the die force balance relations
such as

~

(T =) = % (T = (1) =0, (20)
Now, egs.(18) and (20) constitute a nonlinear relation for
w, and h, which express the instantaneous swelling of
extrudate in the inertialess approach. However, we require
N more sets of relations to calculate 3N unknown initial
values (c{),, (cf)y, (c®),. They may be established if
we introduce additional assumption of force flux balance
valid in each Maxwellian element. We repeat the above
procedure for the individual Maxwell element. Note that at
the die lip after the instantaneous swelling (hence the flow
is approximated to be extensional) the shear stress com-
ponent in the individual Maxwell element may become
non-zero in general, even though the total shear stress

vanishes, i.e., (r;’Z) =0 or, (t(')) #0 , but %;z)— Z(Ty7) =0.
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Applying the previous transformation, we have

vy = F @ F @1

where F has the same form with that in eq.(15). Then, after
integration over the cross-section, the resultant relations of
assumed force flux balance in each mode reduce to

WZ A oA
(T = Zo¢v,T) 7, () ——9<vr D
(V) (v
P 1 ~ A A
i) = ~ (v, (T —hyb"th)) ,
< y> Wo V>< ( y 0 yy))

W b o)
() = WK )(VZ(——ZB—T(I)+(b )21-)(/9} ,

ViL(e®)o= (o] = (T — (T,
o) () Wy it
Vi[(cyy)o_ (Cxx)()] =~ (Tyy> - <Txlx >

=0, (efo(cf(ctdy =1
for i=1, -, N. ¢

Here b’ is written in €q.(19). The solution of egs.(12) with
initial conditions (13) given by eqs.(18-20) and (22) now
provides the extrudate profile w(z) and h(z) as well as
stress distribution.

3. Results and discussion

In this section, we demonstrate the result of model cal-
culation. Since at this point we are not supplied with any
complete set of experimental data, its coincidence with ex-
periments is not tested. In the example of computation
polyethylene is chosen, of which the standard viscoelastic
data have been given by Garcia-Rejon et al. (1981), and the
linear viscoelastic spectrum has been determined by Choi et
al. (1998) and it is listed in Table 1.

In Fig. 2, the normal stress differences with respect to
shear rate are illustrated. Each values of stress for cor-
responding shear rate are characteristic of the constitutive
equation, and here the Leonov model exhibits monotonic
increase of both the quantities (N, and -N,). In the region
of high shear rate as the shear rate increases, N; becomes
approximately proportional to shear ratey, but -N,
approaches the constant value XGi . Hence the ratio INy/
Njlis about 1/10 in the low shear rate, but in the region of
high shear it reaches 1/100 and then decreases further to
zero. A few experimental observations have reported that
N >0, Ny<0, and IN,/N;| = 0.1 possibly in the low shear rate
(e.g. see the book by Leonov, 1994). Hence when we
assume that these facts are valid in the whole region of
deformation rate, the Leonov model may underestimate -N,
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Table 1. Linear viscoelastic parameters for polyethylene (Choi er

al., 1998).

G; (Pa) 0, (sec) v, K
1400 22 1 1
4000 5.5 2.86 0.25
10600 0.95 7.57 0.043
26000 0.1698 18.57 0.0077
120000 0.12266 85.71 0.0056

in high shear.

The result of computation is shown in Figs. 3 and 4 in
two cases of free swelling (0, = 0) and stretching the extru-
date (0,= 6000 Pa), respectively. We assigned 1 m and 1
mm for width and height of the die. The shear rate at the
wall is 105 sec’, and thus the volumetric flow rate be-
comes 4 cm’/sec. In the figures, solid lines represent the
results for the original constitutive model (N,<0), and
dotted lines denote the cases for the modified constitutive
model (N,=0). From Figs. 3(a) and 4(a) it can be clearly
seen that the extrudate becomes much wider when the con-
stitutive equation describes the vanishing second normal
stress difference.

In Fig. 3(b) and 4(b), the detailed evolutionary behavior
of the dimensionless parameters can be examined. When
N,=0, the value of dimensionless thickness becomes
always equal to that of width, and thus the aspect ratio
(width to thickness ratio) of the extrudate remains always
the same with that of the die. However, when the model
predicts nonzero second normal stress difference, the thick-
ness swelling is much higher than the width swelling.
Hence the reduction of aspect ratio of the extrudate is
clearly manifested. In our case, the aspect ratio of extrudate
decreases to about half of that of the die.

100x10° -

10x10°

1x108 4

N, and N, (dyne/cm?®)

100x10°

100 10 102 109 10¢
shear rate (sec™)
Fig. 2. The first (N;) and the second normal stress differences
(-N,) as functions of shear rate.
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Fig. 3. Extrudate profile (a) and dimensionless thickness and wi-
dth (b) in the case of free swelling.
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Fig. 4. Extrudate profile (a) and dimensionless thickness and
width (b) in the case of stretching (Op= 6000 Pa)

Fig.5 shows equilibrium swell ratios (6, = 0) of extrudate
thickness and width with respect to shear rate at the wall.
While the thickness exhibits strong dependence on shear
rate, the width of the extrudate varies little. Hence this
anisotropy of swelling becomes more severe as the shear
rate or the flow rate increases. From the previous results
depicted in Figs.3 and 4, it can be stated that the negative
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value of the second normal stress difference incurs this
anisotropic behavior. Therefore, the significant reduction of
the aspect ratio in manufacturing rectangular fibers can
also be explained at least qualitatively. In our modeling we
employed the simplest version of the Leonov model, and it
may assign too low value for -N, in high shear rate region
as shown in Fig.2. If the real polymeric fluid exhibits
higher -Nj, then this anisotropic swelling is expected to be
more dominant and thus the reduction of the aspect ratio of
the sheet becomes more distinct.

The description of N, becomes different for every rheol-
ogical model, and many viscoelastic constitutive equations
predict even vanishing second normal stress difference in
shear flow. Thus the behavior of extrudate swelling in sheet
casting or rectangular fiber spinning process is strongly
dependent on the nature of the constitutive model chosen
for analysis. This again reflects the importance of the proper
choice of the rheological model for process modeling.

The model developed in this study to account for evo-
lutionary behavior of extrudate swelling in sheet casting
and rectangular fiber spinning processes can easily be
extended to include such effects as gravity, inertia, non-iso-
thermality and air friction, when we employ the same pro-
cedure presented in the work by Choi et al. (1998). There-
fore this formulation can be readily applied to the analysis
of real polymer processing or fiber manufacturing operations
(presumably in some restricted type of flow geometry). In
addition, it may be utilized to indirectly estimate the
approximate value of N, in the viscoelastic flow through
a wide slit channel.

4. Conclusions

Here we suggest 1D simple model to describe the evo-
2.4

2.2 A

2.0

thickness swell ratio (#)
width swell ratio W)

1 10 100 1000 10000

shear rate (sec?)
Fig. 5. Equilibrium thickness and width swell ratios as functions
of shear rate at the wall.
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lution of extrudate in the flat sheet casting or rectangular
fiber spinning process. For proper expression of viscoelas-
tic behavior of polymeric fluid, it employs the simplest
Leonov constitutive equation, which predicts the non-vani-
shing second normal stress difference in shear flow. For 1D
modeling we assume that the flow is extensional outside
the die. Then in order to obtain initial values that contain
the information of deformation history inside the die, we
use the concept of force flux balance at the die exit where
the transition from shear to extensional flow occurs.

The calculation of equations shows strong effect of the
second normal stress difference on the evolution of extru-
date profile. The result describes large increase in sheet
thickness and small increase in width, and the second
normal stress difference induces this relative reduction of
width swell ratio. Such anisotropy in swelling is mani-
fested for both cases of free swelling and stretching of
extrudate, and it coincides with real observations in film
casting and rectangular fiber spinning at least qualitatively.
Many viscoelastic constitutive equations predict the vani-
shing second normal stress difference in shear flow.
Hence on the hypothesis of our formulation, such models
will predict no change in aspect ratio of extrudate, which
contradicts experimental facts. Therefore, it can be stated
that the appropriate choice of the constitutive model
seems crucial for successful analysis of complex industrial
processes.
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