• Title/Summary/Keyword: Shear response

Search Result 1,552, Processing Time 0.021 seconds

Seismic Response of Apartment Building with Base Isolation System Consisting of Sliding-type Bearing and Lend Rubber Bearing (LRB와 슬라이딩베어링을 혼용한 면진시스템을 적용한 아파트 건물의 지진 응답)

  • Chun, Young-Soo;Yoon, Young-Ho;Whang, Ki-Tea;Chang, Kug-Kwan
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.507-514
    • /
    • 2007
  • This paper summarizes the results of a research on the isolate effects and economical efficiencies of seismic isolation design compared with the existing earthquake-resistant design, and presents seismic performance of the base isolation system consisting of sliding-type bearing and lead rubber bearing (LRB) compared with that consisting of the LRB only. From the results of the research, it is verified that seismic isolation is very effective to mitigate the influence of earthquake on structures and it is possible to increase the serviceability due to decrease of the floor acceleration. Also, from the point of view of reduction of story acceleration and base shear, the base isolation system consisting of sliding-type bearing and LRB is more effective than that with LRB only. In respect of economical efficiency, special care should be taken in using this method since costs which have to be paid in proportin to increased performance are high.

A Small Crack Length Evaluation Technique by Electronic Scanning (전자적 스캔에 의한 미소결함길이 평가기법)

  • Cho, Yong-Sang;Kim, Jae-Hoon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.1
    • /
    • pp.15-20
    • /
    • 2009
  • The results of crack evaluation by conventional UT(Ultrasonic Test)is highly depend on the inspector's experience or knowledge of ultrasound. Phased array UT system and its application methods for small crack length evaluation will be a good alternative method which overcome present UT weakness. This study was aimed at checking the accuracy of crack length evaluation method by electronic scanning and discuss about characteristics of electronic scanning for crack length evaluation. Especially ultrasonic phased array with electronic scan technique was used in carrying out both sizing and detect ability of crack as its length changes. The response of ultrasonic phased array was analyzed to obtain the special method of determining crack length without moving the transducer and detect-ability of crack minimal length and depth from the material. A method of crack length determining by electronic scanning for the small crack is very real method which has it's accuracy and verify the effectiveness of method compared to a conventional crack length determination.

Contact interface fiber section element: shallow foundation modeling

  • Limkatanyu, Suchart;Kwon, Minho;Prachasaree, Woraphot;Chaiviriyawong, Passagorn
    • Geomechanics and Engineering
    • /
    • v.4 no.3
    • /
    • pp.173-190
    • /
    • 2012
  • With recent growing interests in the Performance-Based Seismic Design and Assessment Methodology, more realistic modeling of a structural system is deemed essential in analyzing, designing, and evaluating both newly constructed and existing buildings under seismic events. Consequently, a shallow foundation element becomes an essential constituent in the implementation of this seismic design and assessment methodology. In this paper, a contact interface fiber section element is presented for use in modeling soil-shallow foundation systems. The assumption of a rigid footing on a Winkler-based soil rests simply on the Euler-Bernoulli's hypothesis on sectional kinematics. Fiber section discretization is employed to represent the contact interface sectional response. The hyperbolic function provides an adequate means of representing the stress-deformation behavior of each soil fiber. The element is simple but efficient in representing salient features of the soil-shallow foundation system (sliding, settling, and rocking). Two experimental results from centrifuge-scale and full-scale cyclic loading tests on shallow foundations are used to illustrate the model characteristics and verify the accuracy of the model. Based on this comprehensive model validation, it is observed that the model performs quite satisfactorily. It resembles reasonably well the experimental results in terms of moment, shear, settlement, and rotation demands. The hysteretic behavior of moment-rotation responses and the rotation-settlement feature are also captured well by the model.

Self-control of high rise building L-shape in plan considering soil structure interaction

  • Farghaly, A.A.
    • Coupled systems mechanics
    • /
    • v.6 no.3
    • /
    • pp.229-249
    • /
    • 2017
  • A new technique to mitigate irregular buildings with soil structure interaction (SSI) effect subjected to critical seismic waves is presented. The L-shape in plan irregular building for various reasons was selected, subjected to seismic a load which is a big problem for structural design especially without separation gap. The L-shape in plan building with different dimensions was chosen to study, with different rectangularity ratios and various soil kinds, to show the effect of the irregular building on the seismic response. A 3D building subjected to critical earthquake was analyzed by structural analysis program (SAP2000) fixed and with SSI (three types of soils were analyzed, soft, medium and hard soils) to find their effect on top displacement, base shear, and base torsion. The straining actions were appointed and the treatment of the effect of irregular shape under critical earthquake was made by using tuned mass damper (TMD) with different configurations with SSI and without. The study improve the success of using TMDs to mitigate the effect of critical earthquake on irregular building for both cases of study as fixed base and raft foundation (SSI) with different TMDs parameters and configurations. Torsion occurs when the L-shape in plan building subjected to earthquake which may be caused harmful damage. TMDs parameters which give the most effective efficiency in the earthquake duration must be defined, that will mitigate these effects. The parameters of TMDs were studied with structure for different rectangularity ratios and soil types, with different TMD configurations. Nonlinear time history analysis is carried out by SAP2000 with El Centro earthquake wave. The numerical results of the parametric study help in understanding the seismic behavior of L-shape in plan building with TMDs mitigation system.

The Seismic Behavior of Corrugated Steel Plate Lining in Cut-and-Cover Tunnel (개착식 터널에서 파형강판 라이닝의 동적 거동 특성)

  • Kim Jung-Ho;Kim Nag-Young;Lee Yong-Jun;Lee Seung-Ho;Chung Hyung-Sik
    • 한국터널공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.233-247
    • /
    • 2005
  • Most tunnel lining material which has been used in the domestic is a concrete. But many problems as the construction period, the cost, and the crack occurrence for the design, construction, and management were happened in the concrete lining. For this reason, many research institutes like the Korea Highway Corporation recognize the necessity of an alternate material development and grow on the interest for that. So in this study, the seismic behaviour characteristics for the application of the Corrugated Steel Plate Lining in cut-and-cover tunnel are evaluated as several conditions for the backfill height, the cutting slope, and the relative density of backfill soil are changed. The compressive stress which is calculated in the Corrugated Steel Plate Lining by the seismic load is decreased as the backfill height increases and the cut slope grows gentle. Also, the moment shows the tendency of decrease according to the increase of the backfill height. But in the case of the relative density of the backfill soil is small, the moment increases according to the increase of the backfill height and affects the dynamic behaviour characteristic. So it is considered that the relative density of the backfill soil is also the important point. As the result in analyzing the seismic response characteristics of the reinforcement spacing of the Corrugated Steel Plate, the variation in the compressive force is hardly happened, but the moment and the shear force increase on the reinforcement spacing being narrow.

  • PDF

Seismic Fragility of Underground Utility Tunnels (지하 공동구 시설물의 지진취약도 분석)

  • Lee, Deuk-Bok;Lee, Chang-Soo;Shin, Dea-Sub
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.5
    • /
    • pp.413-419
    • /
    • 2016
  • Damage of infrastructures by an earthquake causes the secondary damage through the world at large more than the damage of the structures themselves. Amomg them, underground utility tunnel structures comes under the special life line: communication, gas, electricity and etc. and it has a need to evaluate its fragility to an earthquake exactly. Therefore, the destruction ability according to peak ground acceleration of earthquakes for the underground utility tunnels is evaluated in this paper. As an input ground motion for evaluating seismic fragilities, real earthquakes and artificial seismic waves which could be generated in the Korean peninsula are used. And as a seismic analysis method, response displacement method and time history analyzing method are used. An limit state which determines whether destruction is based on the bending moment and shear deformation. A method used to deduct seismic fragility curve is method of maximum likelihood and the distribution function is assumed to the log normal distribution. It could evaluate the damage of underground utility tunnels to an earthquake and could be applied as basic data for seismic design of underground utility tunnel structures.

Estimation of the First Modal Participation Factor of a Shear Building under Earthquake Load (지진하중을 받는 전단구조물의 1차 모드참여계수 산정)

  • Hwang, Jae-Seung;Kim, Hong-Jin;Kang, Kyung-Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.1 s.41
    • /
    • pp.25-32
    • /
    • 2005
  • Seismic load is distributed to modes of a structure through the modal participation factor(MPF). The modal participation factor is essential to analyze structural response under earthquake load. MPF of a real structure differs from that of analytical mathematical model due to the error induced from analytical assumptions and during the construction. In this study, an identification method is proposed to calculate the 1st MPF of real structure based on $H^{\infty}$ optimal model reduction. The MPF is obtained from the relationship between observability and controllability matrices realized from system identification and those of a prototype 2-degree state space model. The proposed method is verified thorough numerical examples.

Seismic Response of a High-Rise RC Bearing-Wall Structure with Irregularities of Weak Story and Torsion at Bottom Stories (저층부에 약층과 비틀림 비정형성을 가진 고층 비정형 RC벽식 구조물의 지진응답)

  • 이한선;고동우
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.6
    • /
    • pp.81-91
    • /
    • 2003
  • Recently, many high-rise reinforced concrete(RC) bearing-wall structures of multiple uses have been constructed, which have the irregularities of weak(or soft) story and torsion at the lower stories simultaneously. The study stated herein was performed to investigate seismic performance of such a high-rise RC structure through a series of shaking table tests of a 1: 12 model. Based on the observations of the test results, the conclusions are drawn as follows: 1) Accidental torsion due to the uncertainty on the properties of structure can be reasonably predicted by using the dynamic analysis than by using lateral force procedure. 2) The mode coupled by translation and torsion induced the overturning moments not only in the direction of excitations but also in the perpendicular direction: The axial forces in columns due to this transverse overturning moment cannot be adequately predicted using the existing mode analysis technique, and 3) the hysteretic curve and the strength diagram between base shear and torque(BST) clearly reveal the predominant mode of vibrations and the failure mode.

Numerical Analysis of Sunroof Buffeting using STAR-CCM+ (STAR-CCM+를 이용한 썬루프 버페팅 유동 소음 해석)

  • Bonthu, Satish Kumar;Mendonca, Fred;Kim, Ghuiyeon;Back, Young-R.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.3
    • /
    • pp.213-218
    • /
    • 2014
  • CFD flow simulation of vehicles with open sunroof and passenger window help the automotive OEM(original equipment manufacturer) to identify the low frequency noise levels in the cabin. The lock-in and lock-off phenomena observed in the experimental studies of sunroof buffeting is well predicted by CFD speed sweep calculations over the operating speed range of the vehicle. The trend of the shear layer oscillation frequency with vehicle speed is also well predicted. The peak SPL from the CFD calculation has a good compromise with the experimental value after incorporating the real world effects into the CFD model by means of artificial compressibility and damping correction. The entire process right from modeling to flow analysis as well as acoustic analysis has been performed within the single environment i.e., STAR-CCM+.

Nonlinear Dynamic Behaviors of Laminated Composite Structures Containing Central Cutouts (중앙개구부를 갖는 복합신소재 적층 구조의 비선형 동적 거동)

  • Ji, Hyo-Seon;Lee, Sang-Youl
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.5
    • /
    • pp.607-614
    • /
    • 2011
  • This study deals with thegeometrical nonlinear dynamic behavior of laminated plates made of advanced composite materials (ACMs), which contain central cutouts. Based on the first-order shear deformation plate theory (FSDT), the Newmark method and Newton-Raphson iteration wereused for the nonlinear dynamic solution. The effects of the cutout sizes and lay-up sequences on the nonlinear dynamic response for various parameters werestudied using a nonlinear dynamic finite element program that was developed for this study. The several numerical results agreed well with those reported by other investigators for square composite plates with or without central cutouts, and the new results reported in this paper showed significant interactions between the cutout and the layup sequence in the laminate. Key observation points are discussed and a brief design guide for laminates with central cutouts is given.