• 제목/요약/키워드: Shear plate

검색결과 1,763건 처리시간 0.033초

Mindlin 평판 유한요소의 개선 (Improvement of Finite Element for Mindlin Plate Bending)

  • 김선훈;최창근
    • 전산구조공학
    • /
    • 제1권2호
    • /
    • pp.83-90
    • /
    • 1988
  • 본 연구에서는 평판 구조물의 해석을 위한 개선된 유한요소를 제시하였다. 이 요소는 Mindlin 평판이론에 의하여 수식화되었으며, 'Heterosis'평판요소의 변위장에 비적합변위형을 추가함으로써 유도되었다. 본 연구에서 제시한 평판요소는 요소의 강체운동과 관련된 Zero Eigenvalue만을 갖고 있으므로 Spurious Zero Energy Mode를 보이지 않는다. 대표적인 문제에 대한 수치해석을 해 본 결과 본 연구에서 제시한 평판요소는 우수한 수렴도를 보여 주었으며, 아주 얇은 평판문제에서도 요소의 형상에 관계없이 Shear Locking현상을 극복하였다.

  • PDF

교량용 강ㆍ콘크리트 합성 바닥판의 실험적 구조성능 (An Experimental Structural Performance of Steel Concrete Hybrid Deck for Bridge)

  • 정연주;정광회;구현본;김병석
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.524-529
    • /
    • 2003
  • This paper presents a experimental structural performance of steel-concrete hybrid bridge deck, which has studs to connect steel plate and concrete and T beam to improve structural performance, by steel plate shape, studs and load location. It proved that steel-concrete hybrid deck has a high structural performance and lightweight due to the efficient use of steel plate as a structural member, which has only used as formwork. In failure mode, few specimen failed at punching shear and many specimen at concrete crushing, therefore proved it has sufficient stability to punching shear which is the most frequent damage of bridge deck. Steel-concrete hybrid deck of plane steel plate has a high structural performance, and that of corrugated steel plate has a high reduction of weight.

  • PDF

Interfacial stresses in RC beam bonded with a functionally graded material plate

  • Daouadji, Tahar Hassaine;Chedad, Abdebasset;Adim, Belkacem
    • Structural Engineering and Mechanics
    • /
    • 제60권4호
    • /
    • pp.693-705
    • /
    • 2016
  • Functionally graded material (FGM) plates can be bonded to the soffit of a beam as a means of retrofitting the RC beam. In such plated beams, tensile forces develop in the bonded plate and these have to be transferred to the original beam via interfacial shear and normal stresses. In this paper, an interfacial stress analysis is presented for simply supported concrete beam bonded with a functionally graded material FGM plate. This new solution is intended for application to beams made of all kinds of materials bonded with a thin plate, while all existing solutions have been developed focusing on the strengthening of reinforced concrete beams, which allowed the omission of certain terms. It is shown that both the normal and shear stresses at the interface are influenced by the material and geometry parameters of the composite beam. This research is helpful for the understanding on mechanical behavior of the interface and design of the FGM-RC hybrid structures.

Analysis of post-buckling of higher-order graphene oxide reinforced concrete plates with geometrical imperfection

  • Mirjavadi, Seyed Sajad;Forsat, Masoud;Yahya, Yahya Zakariya;Barati, Mohammad Reza;Jayasimha, Anirudh Narasimamurthy;Khan, Imran
    • Advances in concrete construction
    • /
    • 제9권4호
    • /
    • pp.397-406
    • /
    • 2020
  • The present article deals with post-buckling of geometrically imperfect concrete plates reinforced by graphene oxide powder (GOP) based on general higher order plate model. GOP distributions are considered as uniform and linear models. Utilizing a shear deformable plate model having five field components, it is feasible to verify transverse shear impacts with no inclusion of correction factor. The nonlinear governing equations have been solved via an analytical trend for deriving post-buckling load-deflection relations of the GOP-reinforced plate. Derived findings demonstrate the significance of GOP distributions, geometric imperfectness, foundation factors, material compositions and geometrical factors on post-buckling properties of reinforced concrete plates.

직교이방성 장방형 후판의 탄성이론해석 (Elastic Analysis of Orthotropic Rectangular Thick Plates)

  • 권택진
    • 한국공간구조학회논문집
    • /
    • 제1권1호
    • /
    • pp.95-108
    • /
    • 2001
  • A system of equations is developed for the theory of bending of thick orthotropic elastic plates which takes into account the transverse shear deformability of the plate. This system of equations is of such nature that three boundary conditions can and must be prescribed along the edge of the plate, i.e. ${\omega}=0,\;M_x=0,\;M_{xy}=0\;({\omega}=0,\;M_x=0,\;M_{xy}=0)$ at simple supported edges. It can be obtained general solution that is added complementary solution ${\omega}^e$ and paticular solution ${\omega}^p$ by an assumption of solution function. In the next paper, this analytical results will be obtained for perforated thick plates.

  • PDF

전단 변형을 고려한 보강판의 p-Version 유한요소 해석 (p-Version Finite Element Analysis of Stiffened Plates Including Transverse Shear Deformation)

  • 홍종현;우광성;신영식
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1995년도 가을 학술발표회 논문집
    • /
    • pp.145-152
    • /
    • 1995
  • A general stiffener element which includes transverse shear deformation(TSD) is formulated using the p-version of finite element method. Hierarchic C"-shape functions, derived from Integrals of Legendre polynomials, are used to define the assembled stiffness matrix of the stiffener and plate on the basis of 5 D.0.F displacement fields. The stiffness matrix for the stiffener with respect to the local reference frame is transformed to the plate reference system by applying the appropriate transformation matrices in order to insure compatibility of displacements at the junction of the stiffener and plate. The transformation matrices which account for the orientation and the eccentricity effects of the stiffener with respect to the plate reference axes are used to find local behavior at the junction of the stiffener and the relative contributions of the plate and stiffener to the strength of the composite system. The results obtained by the p-version of the finite element method are compared with the results in literatures, especially those by the h-version software, MICROFEAP-II.P-II.

  • PDF

선박 이중판의 보강법 연구 (Study on the Reinforced Method of Doubler Plate in Ship Hull Structure)

  • 함주혁
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.144-149
    • /
    • 2001
  • A study for the structural strength analysis on the doubler plate subjected to the axial, biaxial in-plane compression and shear load has been performed through the systematic evaluation process. In order to estimate the proper static strength of doubler plate, non-linear elasto-plastic analysis is introduced. Gap element modeling for contact effect between main plate and doubler is prepared and nonlinear analysis procedures are illustrated based on MSC/N4W . In addition, some design guides are suggested through the consideration of several important effects such as corrosion of main plate, doubler width, doubler length and doubler thickness. Finally theses results are compared with developed design formula based on the buckling strength and general trends and design guides according to the variation of design parameters are discussed.

  • PDF

CFT기둥-RC 무량판 접합부의 펀칭전단강도 및 거동 (Punching Shear Strength and Behavior of CFT Column to RC Flat Plate connections)

  • 이철호;김진원;이승동;안재권
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2006년도 학술발표회 논문집
    • /
    • pp.168-179
    • /
    • 2006
  • This paper summarizes full-scale test results on CFT column-to-flat plate connections subjected to gravity loading. CFT construction has gained wide acceptance in a relatively short time in domestic building construction practice due to its various structural and construction advantages. However, efficient details for CFT column to flat plate connections have not been proposed yet. Based on the strategies that maximize economical field construction, several connecting schemes were proposed and tested. Test results showed that the proposed connections can exhibit punching shear strength and connection stiffness exceeding those of R/C flat plate counterparts. A semi-analytical procedure is presented to model the behavior of CFT column-to-flat plate connections. The five parameters to model elastic to post-punching catenary action range are calibrated based on the limited test data of this study. The application of the proposed modeling procedure to progressive collapse prevention design is also illustrated.

  • PDF

Theoretical equivalence and numerical performance of T3γs and MITC3 plate finite elements

  • Katili, Andi Makarim;Maknun, Imam Jauhari;Katili, Irwan
    • Structural Engineering and Mechanics
    • /
    • 제69권5호
    • /
    • pp.527-536
    • /
    • 2019
  • This paper will compare $T3{\gamma}_s$ and MITC3 elements, both these two elements are three-node triangular plate bending elements with three degrees of freedom per node. The formulation of the $T3{\gamma}_s$ and MITC3 elements is rather simple and has already been widely used. This paper will prove that the shear strain formulation of these two elements is identical even though they are obtained from two different methods. A single element is used to test the formulation of shear strain matrices. Numerical tests for circular plate cases compared with the exact solutions and with DKMT element will complete this review to verify the performances and show the convergence of these two elements.

Predictions of the maximum plate end stresses of imperfect FRP strengthened RC beams: study and analysis

  • Rabia, Benferhat;Daouadji, Tahar Hassaine;Abderezak, Rabahi
    • Advances in materials Research
    • /
    • 제9권4호
    • /
    • pp.265-287
    • /
    • 2020
  • A theoretical method to predict the interfacial stresses in the adhesive layer of reinforced concrete beams strengthened with porous FRP plate is presented in this paper. The effect due to porosity is incorporated utilizing a new modified rule of mixture covering the porosity phases. The adherend shear deformations have been included in the present theoretical analyses by assuming a linear shear stress through the thickness of the adherends. Remarkable effect of the porosity has been noted in the results. Indeed, the resulting interfacial stresses concentrations are considerably smaller than those obtained by other models which neglect the porosity effect. It was found that the interfacial stresses are highly concentrated at the end of the FRP plate, the minimization of the latter can be achieved by using porous FRP plate in particular at the end. It is also shown that the interfacial stresses of the RC beam increase with volume fraction of fibers, but decrease with the thickness of the adhesive layer.