• Title/Summary/Keyword: Shear load

Search Result 2,648, Processing Time 0.026 seconds

Finite element formulations for free field one-dimensional shear wave propagation

  • Sun-Hoon Kim;Kwang-Jin Kim
    • Earthquakes and Structures
    • /
    • 제26권2호
    • /
    • pp.163-174
    • /
    • 2024
  • Dynamic equilibrium equations for finite element analysis were derived for the free field one-dimensional shear wave propagation through the horizontally layered soil deposits with the elastic half-space. We expressed Rayleigh's viscous damping consisting of mass and stiffness proportional terms. We considered two cases where damping matrices are defined in the total and relative displacement fields. Two forms of equilibrium equations are presented; one in terms of total motions and the other in terms of relative motions. To evaluate the performance of new equilibrium equations, we conducted two sets of site response analyses and directly compared them with the exact closed-form frequency domain solution. Results show that the base shear force as earthquake load represents the simpler form of equilibrium equation to be used for the finite element method. Conventional finite element procedure using base acceleration as earthquake load predicts exact solution reasonably well even in soil deposits with unrealistically high damping.

Mechanical behavior of stud shear connectors embedded in HFRC

  • He, Yu-Liang;Wu, Xu-Dong;Xiang, Yi-Qiang;Wang, Yu-Hang;Liu, Li-Si;He, Zhi-Hai
    • Steel and Composite Structures
    • /
    • 제24권2호
    • /
    • pp.177-189
    • /
    • 2017
  • Hybrid-fiber reinforced concrete (HFRC) may provide much higher tensile and flexural strengths, tensile ductility, and flexural toughness than normal concrete (NC). HFRC slab has outstanding advantages for use as a composite bridge potential deck slab owing to higher tensile strength, ductility and crack resistance. However, there is little information on shear connector associated with HFRC slabs. To investigate the mechanical behavior of the stud shear connectors embedded in HFRC slab, 14 push-out tests (five batches) in HFRC and NC were conducted. It was found that the stud shear connector embedded in HFRC had a better ductility, higher stiffness and a slightly larger shear bearing capacity than those in NC. The experimentally obtained ultimate resistances of the stud shear connectors were also compared against the equations provided by GB50017 2003, ACI 318-112011, AISC 2011, AASHTO LRFD 2010, PCI 2004, and EN 1994-1-1 (2004), and an empirical equation to predict the ultimate shear connector resistance considering the effect of the HFRC slabs was proposed and validated by the experimental data. Curve fitting was performed to find fitting parameters for all tested specimens and idealized load-slip models were obtained for the specimens with HFRC slabs.

Effect of the GFRP wrapping on the shear and bending Behavior of RC beams with GFRP encasement

  • Ozkilic, Yasin Onuralp;Gemi, Lokman;Madenci, Emrah;Aksoylu, Ceyhun;Kalkan, İlker
    • Steel and Composite Structures
    • /
    • 제45권2호
    • /
    • pp.193-204
    • /
    • 2022
  • The need for establishing the contribution of pultruded FRP encasements and additional FRP wraps around these encasements to the shear strength and load-deflection behavior of reinforced concrete beams is the main motivation of the present study. This paper primarily focuses on the effect of additional wrapping around the composite beam on the flexural and shear behavior of the pultruded GFRP (Glass Fiber Reinforced Polymer) beams infilled with reinforced concrete, taking into account different types of failure according to av/H ratio (arch action, shear-tension, shear-compression and pure bending). For this purpose, nine hybrid beams with variable shear span-to-depth ratio (av/H) were tested. Hybrid beams with 500 mm, 1000 mm, and 1500 mm lengths and cross-sections of 150x100 mm and 100x100 mm were tested under three-point and four-point loading. Based on the testing load-displacement relationship, ductility ratio, energy dissipation capacity of the beams were evaluated with comprehensive macro damage analysis on pultruded GFRP profile and GFRP wrapping. The GFRP wraps were established to have a major contribution to the composite beam ductility (90-125%) and strength (40-75%) in all ranges of beam behavior (shear-dominated or dominated by the coupling of shear and flexure). The composite beams with wraps were showns to reach ductilities and strength values of their counterparts with much greater beam depth.

보강재의 부착방법의 따른 물리적 거동 특성에 관한 연구 (A Study on Physical Behavior Property of R/C Beams Strengthened with Bonding Methods)

  • 한만엽;백승덕
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 봄 학술발표회 논문집(I)
    • /
    • pp.727-732
    • /
    • 1999
  • In this research, we made an experiment on the 10 specimen beams that we made. The specimen beams consist of 4 steel plate strengthening beams and 5 carbon fiber sheet strengthening beams. We applied the methods of notch, rounding off a edge, anchor bolt and side shear strengening to the steel plate and for the case of carbon fiber sheet, we applied the methods of anchor bolt, line anchor and shear strengthening. After all the cases were applied, the beams was measured and analyzed about the behavior property of strengthened beams, th ability of strengthening method, the relation between load and the shape of failure, the crack load, the yield load, the shape of crack pattern, the increasing rate from yield load and maximum load and the strain of rebar. All the strengthening methods resulted in almost same value until the yield load, and it wasn't quite different from the theoretical value. In comparison with existing method, the SER, SEAS for the steel plate and the CEA, CESS, CCESS for carbon fiber sheet showed the increasement of ductility with big displacement.

  • PDF

Elastic Wave Propagation in Monoclinic System Due to Harmonic Line Load

  • Kim, Yong-Yun
    • The Journal of the Acoustical Society of Korea
    • /
    • 제17권2E호
    • /
    • pp.47-52
    • /
    • 1998
  • An analysis of dynamic responses is carried out on monoclinic anisotropic system due to a buried harmonic line source. The load is in the form of a normal stress acting along an arbitrary axis on the plane of symmetry within the orthotropic materials: In case that the line load is acting along the symmetry axis normal to the plane of symmetry, plane wave equation is coupled with verital shear wave and longitudinal wave. However, if the line load is acting along an arbitrary axis normal to the plane of symmetry, plane wave equation is coupled with vertical shear wave, longitudinal wave and horizontal shear wave. We first considered the equation of motion in a reference coordinate system, where the line load is coincident with a symmetry axis of the orthotropic material. Then the equation of motion is transformed into one with respect to general coordinate system with azimuthal angle by using transformation tensor. Plane wave solutions of monoclinic systems are derived for infinite media. Finally complete solutions for the plane harmonic wave are obtained by calculating the inverse of the integral transforms, in which bulk wave poles are avoided by deforming the contour of the integration to the complex plane. Numerical results for examples of orthotropic material belonging to monoclinic symmetry are demonstrated.

  • PDF

Seismic behavior of reinforced concrete exterior beam-column joints strengthened by ferrocement composites

  • Li, Bo;Lam, Eddie Siu-shu;Wu, Bo;Wang, Ya-yong
    • Earthquakes and Structures
    • /
    • 제9권1호
    • /
    • pp.233-256
    • /
    • 2015
  • This paper presents an experimental study to assess the effectiveness of using ferrocement to strengthen deficient beam-column joints. Ferrocement is proposed to protect the joint region through replacing concrete cover. Six exterior beam-column joints, including two control specimens and four strengthened specimens, are prepared and tested under constant axial load and quasi-static cyclic loading. Two levels of axial load on column (0.2fc'Ag and 0.4fc'Ag) and two types of skeletal reinforcements in ferrocement (grid reinforcements and diagonal reinforcements) are considered as test variables. Experimental results have indicated that ferrocement as a composite material can enhance the seismic performance of deficient beam-column joints in terms of peak horizontal load, energy dissipation, stiffness and joint shear strength. Shear distortions within the joints are significantly reduced for the strengthened specimens. High axial load (0.4fc'Ag) has a detrimental effect on peak horizontal load for both control and ferrocement-strengthened specimens. Specimens strengthened by ferrocement with two types of skeletal reinforcements perform similarly. Finally, a method is proposed to predict shear strength of beam-column joints strengthened by ferrocement.

A new model for T-shaped combined footings part II: Mathematical model for design

  • Luevanos-Rojas, Arnulfo;Lopez-Chavarria, Sandra;Medina-Elizondo, Manuel
    • Geomechanics and Engineering
    • /
    • 제14권1호
    • /
    • pp.61-69
    • /
    • 2018
  • The first part shows the optimal contact surface for T-shaped combined footings to obtain the most economical dimensioning on the soil (optimal area). This paper presents the second part of a new model for T-shaped combined footings, this part shows a the mathematical model for design of such foundations subject to axial load and moments in two directions to each column considering the soil real pressure acting on the contact surface of the footing with one or two property lines restricted, the pressure is presented in terms of an axial load, moment around the axis "X" and moment around the axis "Y" to each column, and the methodology is developed using the principle that the derived of the moment is the shear force. The classic model considers an axial load and a moment around the axis "X" (transverse axis) applied to each column, i.e., the resultant force from the applied loads is located on the axis "Y" (longitudinal axis), and its position must match with the geometric center of the footing, and when the axial load and moments in two directions are presented, the maximum pressure and uniform applied throughout the contact surface of the footing is considered the same. To illustrate the validity of the new model, a numerical example is presented to obtain the design for T-shaped combined footings subjected to an axial load and moments in two directions applied to each column. The mathematical approach suggested in this paper produces results that have a tangible accuracy for all problems.

조합하중을 받는 전단변형 기둥의 좌굴 후 거동 해석 (Post-Buckling of Shear Deformable Uniform Columns Under a Combined Load)

  • 유영찬;신영재
    • 한국강구조학회 논문집
    • /
    • 제15권3호
    • /
    • pp.313-320
    • /
    • 2003
  • 본 연구는 등분포 축하중과 자유단의 집중하중으로 구성된 조합하중을 받는 등단면 기둥을 대상으로 휨과 전단변형을 고려한 비선형 미분 방정식을 유도하고, 미분 변환을 적용한 수치해석을 실시하여 좌굴 하중을 구하고 좌굴 후 거동 해석을 수행하였다. 자유단의 여러가지 기울기에 따른 좌굴하중을 구하였으며, 미분 변환으로 얻어진 본 연구의 결과는 기존의 연구 결과와 양호한 대응을 나타냈다. 본 연구를 통하여 미분 변환법이 좌굴 후 거동 해석과 같은 비선형 미분방정식의 해법에 적용될 수 있음을 확인하였고, 향후 좀 더 복잡하고 다양한 문제에도 응용될 수 있을 것으로 기대된다.

사질지반에서의 바렛말뚝의 주면하중전이 거동 평가 (Evaluation of Shear Load-transfer Barrette Pile in Sandy Soils)

  • 이상래;박성완;임대성
    • 한국지반공학회논문집
    • /
    • 제26권9호
    • /
    • pp.5-13
    • /
    • 2010
  • 최근 초고층 빌딩과 대형 교량의 사용 증가로 인하여 바렛말뚝에 대한 사용이 증가하고 있지만 바렛말뚝의 주면부 거동특성에 대한 연구는 미비한 실정이다. 이에 본 연구에서는 실물크기 시험말뚝에 대한 현장재하시험을 실시하여 표준관입시험 저항치와 바렛말뚝의 주면히중전이곡선을 산정하는 경험식을 제안하였다. 또한 3차원 유한요소해석을 실시하여 말뚝과 지반과의 경계면 효과를 살펴보았으며 이를 현장자료와 비교하여 평가하였다.

강상자형교의 전단력 산정을 위한 하중분배계수 (Load Distribution Factors for Determinating Shear Force in Steel Box Girder Bridges)

  • 송재호;김민욱;김일수;오진우
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제15권2호
    • /
    • pp.88-97
    • /
    • 2011
  • 강상자형사교의 경우 국내의 도로교 설계기준이 갖추어지지 않아, 미국의 AASHTO 및 AASHTO LRFD 설계기준을 적용할 경우에는 실제의 거동과 다른 하중분배계수를 산출하게 되어 과대설계 및 과소설계를 초래할 가능성을 가지고 있다. 본 연구의 목적은 실제 거동을 바탕으로 한 강상자형 사교의 둔각부 지점에서의 전단력 산정을 위한 하중분배계수식을 제시하는 데 있다. 이를 위하여 본 연구에서는 강상자형 사교의 다양한 구조모델들에 대해 유한요소해석을 수행하고, 각 매개변수들이 강상자형사교의 하중분배계수에 미치는 영향을 분석한 후, 다중회귀분석을 수행하여 강상자형사교의 전단력 산정을 위한 하중분배계수식을 제시한다.